Java中对于位运算的优化以及运用与思考(上)

简介: Java中对于位运算的优化以及运用与思考(上)

引言


随着JDK的发展以及JIT的不断优化,我们很多时候都可以写读起来易读但是看上去性能不高的代码了,编译器会帮我们优化代码。之前大学里面学单片机的时候,由于内存以及处理器性能都极其有限(可能很多时候考虑内存的限制优先于处理器),所以很多时候,利用位运算来节约空间或者提高性能,那么这些优秀的思想,放到目前的Java中,是否还有必要这么做呢?我们逐一思考与验证下(其实这也是一个关于Premature optimization的界定的思考)


1. 乘法与左移位


左移一位,相当于乘以2,左移n位,相当于乘以2的n次方。

1 << 1 == 1 * 2 //true
1 << n == 1 * pow(2, n) // true
public int pow(int i, int n) {
    assert n >= 0;
    int result = 1;
    for (int i = 0; i < n; i++) {
        result *= i;
    }
    return result;
}

看上去,移位应该比乘法性能快。那么JIT与JVM虚拟机是否做了一些优化呢?优化分为两部分,一个是编译器优化,另一个是处理器优化。我们先来看看字节码是否一致判断是否有编译优化,例如直接将乘以2优化成左移一位,来编写两个函数:

public void multiply2_1() {
    int i = 1;
    i = i << 1;
}
public void multiply2_2() {
    int i = 1;
    i *= 2;
}

编译好之后,用javap -c来看下编译好的class文件,字节码是:

public void multiply2_1();
    Code:
       0: iconst_1
       1: istore_1
       2: iload_1
       3: iconst_1
       4: ishl
       5: istore_1
       6: return
  public void multiply2_2();
    Code:
       0: iconst_1
       1: istore_1
       2: iload_1
       3: iconst_2
       4: imul
       5: istore_1
       6: return

可以看出左移是ishl,乘法是imul,从字节码上看编译器并没有优化。那么在执行字节码转换成处理器命令是否会优化呢?是会优化的,在底层,乘法其实就是移位,但是并不是简单地左移

我们来使用jmh验证下,添加依赖:

<dependency>
    <groupId>org.openjdk.jmh</groupId>
    <artifactId>jmh-core</artifactId>
    <version>1.22</version>
</dependency>
<dependency>
    <groupId>org.openjdk.jmh</groupId>
    <artifactId>jmh-generator-annprocess</artifactId>
    <version>1.22</version>
</dependency>
<!-- https://mvnrepository.com/artifact/site.ycsb/core -->
<dependency>
    <groupId>site.ycsb</groupId>
    <artifactId>core</artifactId>
    <version>0.17.0</version>
</dependency>


实现思路:

  1. 被乘数的选择:被乘数固定为1,或者是一个极小值或者极大值或者是稀疏值(转换成2进制很多位是0),测试结果没啥太大的参考意义,所以我们选择2的n次方减某一数字作为被乘数
  2. 乘数生成的性能损耗:乘数是2的随机n次方,生成这个的方式要一致,我们这里要测试的仅仅是移位还有乘法运算速度,和实现复杂度没有关系。 实现代码:
@Benchmark
@Warmup(iterations = 0)
@Measurement(iterations = 300)
public void multiply2_n_shift_not_overflow(Generator generator) {
    int result = 0;
    int y = 0;
    for (int j = 0; j < generator.divide.length; j++) {
        //被乘数x为2^n - j
        int x = generator.divide[j] - j;
        int ri = generator.divide.length - j - 1;
        y = generator.divide[ri];
        result += x * y;
        //为了和移位测试保持一致所以加上这一步
        result += y;
    }
}
@Benchmark
@Warmup(iterations = 0)
@Measurement(iterations = 300)
public void multiply2_n_mul_not_overflow(Generator generator) {
    int result = 0;
    int y = 0;
    for (int j = 0; j < generator.divide.length; j++) {
        int x = generator.divide[j] - j;
        int ri = generator.divide.length - j - 1;
        //为了防止乘法多了读取导致性能差异,这里虽然没必要,也读取一下
        y = generator.divide[ri];
        result += x << ri;
        //为了防止虚拟机优化代码将上面的给y赋值踢出循环,加上下面这一步
        result += y;
    }
}

测试结果:

Benchmark                 Mode  Cnt         Score         Error  Units
BitUtilTest.multiply2_n_mul_not_overflow    thrpt  300  35882831.296 ±  48869071.860  ops/s
BitUtilTest.multiply2_n_shift_not_overflow  thrpt  300  59792368.115 ±  96267332.036  ops/s

可以看出,左移位相对于乘法还是有一定性能提升的


2. 除法和右移位


这个和乘法以及左移位是一样的.直接上测试代码:

@Benchmark
@Warmup(iterations = 0)
@Measurement(iterations = 300)
public void divide2_1_1(Generator generator) {
    int result = 0;
    for (int j = 0; j < generator.divide.length; j++) {
        int l = generator.divide[j];
        result += Integer.MAX_VALUE / l;
    }
}
@Benchmark
@Warmup(iterations = 0)
@Measurement(iterations = 300)
public void divide2_1_2(Generator generator) {
    int result = 0;
    for (int j = 0; j < generator.divide.length; j++) {
        int l = generator.divide[j];
        result += Integer.MAX_VALUE >> j;
    }
}

结果:

Benchmark                                    Mode  Cnt         Score           Error  Units
BitUtilTest.divide2_n_div                   thrpt  300  10219904.214 ±   5787618.125  ops/s
BitUtilTest.divide2_1_shift                 thrpt  300  44536470.740 ± 113360206.643  ops/s

可以看出,右移位相对于除法还是有一定性能提升的


3. “取余”与“取与”运算


对于2的n次方取余,相当于对2的n次方减一取与运算,n为正整数。为什么呢?通过下图就能很容易理解:

十进制中,对于10的n次方取余,直观来看就是:


微信图片_20220624120602.jpg


其实就是将最后n位取出,就是余数。 对于二进制,是一样的:


微信图片_20220624120637.jpg



相关文章
|
1月前
|
Java 流计算
利用java8 的 CompletableFuture 优化 Flink 程序
本文探讨了Flink使用avatorscript脚本语言时遇到的性能瓶颈,并通过CompletableFuture优化代码,显著提升了Flink的QPS。文中详细介绍了avatorscript的使用方法,包括自定义函数、从Map中取值、使用Java工具类及AviatorScript函数等,帮助读者更好地理解和应用avatorscript。
利用java8 的 CompletableFuture 优化 Flink 程序
|
1月前
|
缓存 算法 Java
Java中的内存管理:理解与优化
【10月更文挑战第6天】 在Java编程中,内存管理是一个至关重要的主题。本文将深入探讨Java内存模型及其垃圾回收机制,并分享一些优化内存使用的策略和最佳实践。通过掌握这些知识,您可以提高Java应用的性能和稳定性。
44 4
|
6天前
|
缓存 算法 Java
本文聚焦于Java内存管理与调优,介绍Java内存模型、内存泄漏检测与预防、高效字符串拼接、数据结构优化及垃圾回收机制
在现代软件开发中,性能优化至关重要。本文聚焦于Java内存管理与调优,介绍Java内存模型、内存泄漏检测与预防、高效字符串拼接、数据结构优化及垃圾回收机制。通过调整垃圾回收器参数、优化堆大小与布局、使用对象池和缓存技术,开发者可显著提升应用性能和稳定性。
21 6
|
16天前
|
Java 数据库连接 数据库
优化之路:Java连接池技术助力数据库性能飞跃
在Java应用开发中,数据库操作常成为性能瓶颈。频繁的数据库连接建立和断开增加了系统开销,导致性能下降。本文通过问题解答形式,深入探讨Java连接池技术如何通过复用数据库连接,显著减少连接开销,提升系统性能。文章详细介绍了连接池的优势、选择标准、使用方法及优化策略,帮助开发者实现数据库性能的飞跃。
23 4
|
14天前
|
存储 Java 开发者
成功优化!Java 基础 Docker 镜像从 674MB 缩减到 58MB 的经验分享
本文分享了如何通过 jlink 和 jdeps 工具将 Java 基础 Docker 镜像从 674MB 优化至 58MB 的经验。首先介绍了选择合适的基础镜像的重要性,然后详细讲解了使用 jlink 构建自定义 JRE 镜像的方法,并通过 jdeps 自动化模块依赖分析,最终实现了镜像的大幅缩减。此外,文章还提供了实用的 .dockerignore 文件技巧和选择安全、兼容的基础镜像的建议,帮助开发者提升镜像优化的效果。
|
19天前
|
缓存 前端开发 JavaScript
9大高性能优化经验总结,Java高级岗必备技能,强烈建议收藏
关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。本文介绍了9种性能优化方法,涵盖代码优化、数据库优化、连接池调优、架构层面优化、分布式缓存、异步化、Web前端优化、服务化、硬件升级、搜索引擎和产品逻辑优化。欢迎留言交流。
|
18天前
|
存储 缓存 Java
Java应用瘦身记:Docker镜像从674MB优化至58MB的实践指南
【10月更文挑战第22天】 在容器化时代,Docker镜像的大小直接影响到应用的部署速度和运行效率。一个轻量级的Docker镜像可以减少存储成本、加快启动时间,并提高资源利用率。本文将分享如何将一个Java基础Docker镜像从674MB缩减到58MB的实践经验。
29 1
|
19天前
|
消息中间件 监控 算法
Java性能优化:策略与实践
【10月更文挑战第21】Java性能优化:策略与实践
|
19天前
|
SQL 监控 Java
Java性能优化:提升应用效率与响应速度的全面指南
【10月更文挑战第21】Java性能优化:提升应用效率与响应速度的全面指南
|
30天前
|
存储 算法 Java
深入理解Java虚拟机(JVM)及其优化策略
【10月更文挑战第10天】深入理解Java虚拟机(JVM)及其优化策略
41 1