块级(ctid)扫描在IoT(物联网)极限写和消费读并存场景的应用

本文涉及的产品
RDS SQL Server Serverless,2-4RCU 50GB 3个月
推荐场景:
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云原生数据库 PolarDB 分布式版,标准版 2核8GB
简介:

标签

PostgreSQL , 块扫描 , 行号扫描 , ctid , tid scan , IoT , 物联网 , 极限写入 , 实时消费 , 实时读 , 堆表 , heap , 时序


背景

在物联网有一个非常普遍的数据需求,就是数据的写入,另一个普遍的需求则是数据的消费(按时序读取),以及流式计算。

关于流式计算,请参考

《(流式、lambda、触发器)实时处理大比拼 - 物联网(IoT)\金融,时序处理最佳实践》

《流计算风云再起 - PostgreSQL携PipelineDB力挺IoT》

《"物联网"流式处理应用 - 用PostgreSQL实时处理(万亿每天)》

接下来我们谈一谈极限写入和消费。

写入

从数据存储结构来看,PostgreSQL的HEAP存储是非常适合高速写入的,追加式写入。以下文章中已得到高速写入的验证。

《PostgreSQL 如何潇洒的处理每天上百TB的数据增量》

块(时序列)索引

BRIN索引,也被称为块索引,是针对数据块元数据建立的索引(例如某个自增长字段,物理存储和字段的值存在很好的线性相关性,那么每个块的数据区间就具有非常强的独立性),BRIN索引非常小,对写入性能的影响可以忽略。

BRIN适合物理存储和字段的值存在很好的线性相关性的字段,例如时序字段。

或者使用cluster或order 重排后,适合对应字段。

消费

消费是指异步的读取数据,处理数据的过程,例如IoT场景,数据的写入延迟要求非常低,所以要求写入吞吐特别大。

而处理方面,则通过消费机制,进行处理。

那么如何消费呢?

通常可以根据索引进行消费,比如前面提到的BRIN索引,对写入吞吐的影响小,同时支持=,以及范围的检索。如果有时序字段的话,BRIN是非常好的选择。

然而并非所有的数据写入场景都有时序字段(当然用户可以添加一个时间字段来解决这个问题)。当没有时序字段时,如何消费效率最高呢?

块扫描

块扫描是很好的选择,前面提到了数据存储是HEAP,追加形式。

PostgreSQL提供了一种tid scan的扫描方法,告诉数据库你要搜索哪个数据块的哪条记录。

select * from tbl where ctid='(100,99)';  

这条SQL指查询100号数据块的第100条记录。

这种扫描效率非常之高,可以配合HEAP存储,在消费(读取记录)时使用。

评估块记录数

PostgreSQL暂时没有提供返回整个数据块的所有记录的接口,只能返回某个数据块的某一条记录,所以如果我们需要读取某个数据块的记录,需要枚举该数据块的所有行。

如何评估一个数据块有多少条记录,或者最多有多少条记录?

PAGE layout

https://www.postgresql.org/docs/10/static/storage-page-layout.html

HeapTupleHeaderData Layout

Field Type Length Description
t_xmin TransactionId 4 bytes
t_xmax TransactionId 4 bytes delete XID stamp
t_cid CommandId 4 bytes insert and/or delete CID stamp (overlays with t_xvac)
t_xvac TransactionId 4 bytes XID for VACUUM operation moving a row version
t_ctid ItemPointerData 6 bytes current TID of this or newer row version
t_infomask2 uint16 2 bytes number of attributes, plus various flag bits
t_infomask uint16 2 bytes various flag bits
t_hoff uint8 1 byte offset to user data

Overall Page Layout

Item Description
PageHeaderData 24 bytes long. Contains general information about the page, including free space pointers.
ItemIdData Array of (offset,length) pairs pointing to the actual items. 4 bytes per item.
Free space The unallocated space. New item pointers are allocated from the start of this area, new items from the end.
Items The actual items themselves.
Special space Index access method specific data. Different methods store different data. Empty in ordinary tables.

单页最大记录数估算

最大记录数=block_size/(ctid+tuple head)=block_size/(4+27);

postgres=# select current_setting('block_size');  
 current_setting   
-----------------  
 32768  
(1 row)  
  
postgres=# select current_setting('block_size')::int/31;  
 ?column?   
----------  
     1057  
(1 row)  

如果需要评估更精确的行数,可以加上字段的固定长度,变长字段的头(4BYTE)。

例子

生成指定block TID的函数

create or replace function gen_tids(blkid int) returns tid[] as $$  
select array(  
  SELECT ('('||blkid||',' || s.i || ')')::tid  
    FROM generate_series(0,current_setting('block_size')::int/31) AS s(i)  
)  ;  
$$ language sql strict immutable;  

读取某个数据块的记录

postgres=# create table test(id int);  
CREATE TABLE  
postgres=# insert into test select generate_series(1,10000);  
INSERT 0 10000  
  
postgres=# explain (analyze,verbose,timing,costs,buffers) select * from test where ctid = any  
(  
  array  
  (  
    SELECT ('(0,' || s.i || ')')::tid  
      FROM generate_series(0, current_setting('block_size')::int/31) AS s(i)  
  )  
);  
                                                                QUERY PLAN                                                                  
------------------------------------------------------------------------------------------------------------------------------------------  
 Tid Scan on postgres.test  (cost=25.03..40.12 rows=10 width=4) (actual time=0.592..0.795 rows=909 loops=1)  
   Output: test.id  
   TID Cond: (test.ctid = ANY ($0))  
   Buffers: shared hit=1057  
   InitPlan 1 (returns $0)  
     ->  Function Scan on pg_catalog.generate_series s  (cost=0.01..25.01 rows=1000 width=6) (actual time=0.087..0.429 rows=1058 loops=1)  
           Output: ((('(0,'::text || (s.i)::text) || ')'::text))::tid  
           Function Call: generate_series(0, ((current_setting('block_size'::text))::integer / 31))  
 Planning time: 0.106 ms  
 Execution time: 0.881 ms  
(10 rows)  
postgres=# explain (analyze,verbose,timing,costs,buffers) select * from test where ctid = any(gen_tids(1));  
  
 Tid Scan on postgres.test  (cost=1.32..1598.90 rows=1058 width=4) (actual time=0.026..0.235 rows=909 loops=1)  
   Output: id  
   TID Cond: (test.ctid = ANY ('{"(1,0)","(1,1)","(1,2)","(1,3)","(1,4)","(1,5)","(1,6)","(1,7)","(1,8)","(1,9)","(1,10)","(1,11)","(1,12)","(1,13)","(1,14)","(1,15)","(1,16)","(1,17)","(1,18)","(1,19)","(1,20)","(1,21)","(1,22)","(1,23)  
","(1,24)","(1,25)"  
....  
   Buffers: shared hit=1057  
 Planning time: 1.084 ms  
 Execution time: 0.294 ms  
(6 rows)  
postgres=# select ctid,* from test where ctid = any(gen_tids(11));
  ctid  |  id   
--------+-------
 (11,1) | 10000
(1 row)

postgres=# select ctid,* from test where ctid = any(gen_tids(9));
  ctid   |  id  
---------+------
 (9,1)   | 8182
 (9,2)   | 8183
 (9,3)   | 8184
 (9,4)   | 8185
 (9,5)   | 8186
 (9,6)   | 8187
 ...
 (9,904) | 9085
 (9,905) | 9086
 (9,906) | 9087
 (9,907) | 9088
 (9,908) | 9089
 (9,909) | 9090
(909 rows)

扩展场景

如果数据没有更新,删除;那么CTID还可以作为索引来使用,例如全文检索(ES),可以在建立索引时使用ctid来指向数据库中的记录,而不需要另外再建一个PK,也能大幅度提升写入性能。

参考

https://www.citusdata.com/blog/2016/03/30/five-ways-to-paginate/

https://www.postgresql.org/message-id/flat/be64327d326568a3be7fde1891ed34ff.squirrel%40sq.gransy.com#be64327d326568a3be7fde1891ed34ff.squirrel@sq.gransy.com

相关实践学习
钉钉群中如何接收IoT温控器数据告警通知
本实验主要介绍如何将温控器设备以MQTT协议接入IoT物联网平台,通过云产品流转到函数计算FC,调用钉钉群机器人API,实时推送温湿度消息到钉钉群。
阿里云AIoT物联网开发实战
本课程将由物联网专家带你熟悉阿里云AIoT物联网领域全套云产品,7天轻松搭建基于Arduino的端到端物联网场景应用。 开始学习前,请先开通下方两个云产品,让学习更流畅: IoT物联网平台:https://iot.console.aliyun.com/ LinkWAN物联网络管理平台:https://linkwan.console.aliyun.com/service-open
目录
相关文章
|
1月前
|
传感器 物联网 数据挖掘
新技术趋势与应用:物联网与虚拟现实的未来发展###
随着科技的迅猛发展,物联网(IoT)和虚拟现实(VR)已成为引领未来的重要技术趋势。本文旨在探讨这两项新兴技术的发展趋势和应用场景,通过分析当前技术现状、挑战及未来前景,揭示物联网和虚拟现实在各领域的潜在影响和应用价值。研究表明,物联网在智能家居、智慧城市、工业自动化等方面具有广泛的应用前景;而虚拟现实则在游戏娱乐、教育培训、医疗健康等领域展现出巨大的潜力。本文认为,随着技术的不断进步,物联网和虚拟现实将深度融合,为社会经济发展带来新的机遇和挑战。 ###
144 59
|
1月前
|
存储 安全 物联网
未来已来:区块链技术在物联网与虚拟现实中的应用
随着科技的不断进步,新兴技术如区块链、物联网(IoT)和虚拟现实(VR)正在逐渐改变我们的生活和工作方式。本文将探讨这些技术的发展趋势和应用场景,以及它们如何相互融合,为我们带来更便捷、安全和沉浸式的体验。
|
29天前
|
供应链 监控 数据可视化
物联网技术在物流与供应链管理中的应用与挑战
本文探讨了物联网技术在物流与供应链管理中的应用,通过实时追踪、信息共享、智能化决策等手段,大幅提升了管理效率和智能化水平。特别介绍了板栗看板作为专业可视化工具,在数据监控、分析及协同作业中的重要作用。未来,随着技术的进一步发展,物流与供应链管理将更加智能高效,但也面临数据安全、标准化等挑战。
|
1月前
|
供应链 物联网 区块链
新技术趋势与应用:探讨新兴技术如区块链、物联网、虚拟现实等的发展趋势和应用场景
本文将探讨新兴技术的发展趋势和应用场景,包括区块链技术、物联网和虚拟现实等。我们将深入了解这些技术的发展现状,以及它们在未来可能带来的变革。同时,我们还将提供一些代码示例,以帮助读者更好地理解这些技术的应用。
|
2月前
|
安全 物联网 物联网安全
揭秘区块链技术在物联网(IoT)安全中的革新应用
揭秘区块链技术在物联网(IoT)安全中的革新应用
|
2月前
|
传感器 存储 物联网
在物联网(IoT)快速发展的今天,C语言作为物联网开发中的关键工具,以其高效、灵活、可移植的特点
在物联网(IoT)快速发展的今天,C语言作为物联网开发中的关键工具,以其高效、灵活、可移植的特点,广泛应用于嵌入式系统开发、通信协议实现及后端服务构建等领域,成为推动物联网技术进步的重要力量。
52 1
|
2月前
|
传感器 存储 物联网
物联网:关键技术剖析与应用拓展
物联网(IoT)通过互联网连接各种设备,实现数据交换和远程控制。本书深入解析了物联网的关键技术,如传感器、通信协议、数据处理等,并探讨了其在智慧城市、工业自动化等领域的广泛应用前景。
|
2月前
|
传感器 物联网 区块链
新技术趋势与应用:探讨新兴技术如区块链、物联网、虚拟现实等的发展趋势和应用场景###
随着科技的不断进步,新兴技术如区块链、物联网和虚拟现实正逐步改变我们的生活和工作方式。本文将探讨这些技术的发展趋势和应用场景,旨在提供一个全面的概述,帮助读者理解它们对未来可能产生的影响。 ###
31 0
|
2月前
|
存储 安全 物联网
政府在推动物联网技术标准和规范的统一方面可以发挥哪些作用?
政府在推动物联网技术标准和规范的统一方面可以发挥哪些作用?
113 50
|
2月前
|
安全 物联网 物联网安全
制定统一的物联网技术标准和规范的难点有哪些?
制定统一的物联网技术标准和规范的难点有哪些?
71 2