《信息存储与管理(第二版):数字信息的存储、管理和保护》—— 第2章 数据中心环境

简介:

本节书摘来异步社区《信息存储与管理(第二版):数字信息的存储、管理和保护》一书中的第2章,作者:【新加坡】G.Somasundaram ,【美】Alok Shrivastava,更多章节内容可以访问云栖社区“异步社区”公众号查看。

第2章 数据中心环境

信息存储与管理(第二版):数字信息的存储、管理和保护
核心概念

应用、数据管理系统、主机、连接和存储设备
应用虚拟化
文件系统和卷管理器
计算、桌面和内存的虚拟化
存储介质
磁盘部件
分区位记录
逻辑块寻址
闪存盘
不管商业机构的规模如何,数据中心都是其不可或缺的部分。集中管理的主机、存储、连接(或网络)、应用和数据库管理系统(DBMS)是一个数据中心的关键部件。这些部件协同工作,对数据进行处理和存储。随着虚拟化的成熟,传统的数据中心也逐渐发展为虚拟化的数据中心(virtualized data center,VDC)。在虚拟化的数据中心中,传统的数据中心资源被放到一个共享池里,作为虚拟资源提供。经过这个抽象化处理,物理资源的复杂性和局限性对于用户不再可见。利用虚拟化整合IT资源,商业机构可以提高基础设施的利用率,降低整体拥有成本。另外,在一个虚拟化的数据中心中,虚拟资源的创建是通过软件实现的,与传统数据中心的物理资源的部署相比要快很多。本章将会讲述数据中心的所有关键部件,包括在计算、内存、桌面和应用层面的虚拟化。存储和网络的虚拟化将会在后面的章节涉及。

信息资产对于商业机构的关键性日增,存储这一数据中心的关键部件,被视为一项独特的资源。存储的实现和管理值得特别关注。本章还将涉及存储子系统,以及磁盘驱动器的组件、几何构造和性能参数,以及实现主机和存储之间连接的技术。

相关文章
|
存储 人工智能 运维
超大规模云数据中心对存储的诉求有哪些?
要实现超大规模部署的特性,就对存储有别于普通数据中心或者消费市场的诉求。具体有哪些呢?主要有以下几点,我们针对部分信息展开讨论
|
8月前
|
机器学习/深度学习 数据挖掘 物联网
【专栏】机器学习如何通过预测性维护、负载预测、动态冷却管理和能源效率优化提升数据中心能效
【4月更文挑战第27天】随着信息技术发展,数据中心能耗问题日益突出,占全球电力消耗一定比例。为提高能效,业界探索利用机器学习进行优化。本文讨论了机器学习如何通过预测性维护、负载预测、动态冷却管理和能源效率优化提升数据中心能效。然而,数据质量、模型解释性和规模化扩展是当前挑战。未来,随着技术进步和物联网发展,数据中心能效管理将更智能自动化,机器学习将在实现绿色高效发展中发挥关键作用。
138 5
|
8月前
|
机器学习/深度学习 运维 算法
利用机器学习优化数据中心的能效管理
【4月更文挑战第30天】在数据中心的运营成本中,能源消耗占据了一个显著的比例。随着能源价格的上升和环境保护意识的增强,如何降低能源消耗成为数据中心管理者们面临的一个重要挑战。本文探讨了一种基于机器学习的方法来优化数据中心的能效管理,通过分析历史数据和实时监测数据,动态调整资源分配和冷却策略,以实现能源消耗的最小化。
|
8月前
|
机器学习/深度学习 资源调度 算法
利用机器学习优化数据中心的能效管理
【5月更文挑战第31天】 在数据中心管理和运营中,能效优化是降低运营成本和减少环境影响的关键。本文提出了一种基于机器学习的方法来动态调整数据中心的资源分配,旨在提高整体能源效率。该方法通过分析历史数据和实时负载信息,预测未来工作负载并相应地调整硬件配置。实验结果表明,与传统的静态管理策略相比,所提出的动态管理策略可以显著降低能耗,同时保持服务质量。
|
8月前
|
机器学习/深度学习 缓存 算法
深入理解操作系统的虚拟内存管理利用机器学习技术优化数据中心能效
【5月更文挑战第25天】 在现代计算机系统中,虚拟内存是允许用户程序逻辑地址空间与物理内存解耦的关键概念。它为每个进程提供了一个独立的、连续的地址空间,通过内存管理单元(MMU)硬件的支持,将程序使用的虚拟地址映射到实际的物理内存地址。这种机制不仅简化了程序的编写和内存的管理,还提供了保护机制,防止不同进程之间的相互干扰。本文将探讨虚拟内存的工作原理、分页系统的实现以及虚拟内存带来的性能影响,并讨论操作系统如何优化内存使用和管理。
|
8月前
|
机器学习/深度学习 存储 算法
利用机器学习优化数据中心的能效管理
【5月更文挑战第23天】在本文中,我们探讨了一种基于机器学习的方法来优化数据中心的能效管理。通过分析历史数据,我们的模型能够预测数据中心的能源需求,并据此调整能源分配,以达到节能和提高能效的目标。这种方法不仅能够降低运营成本,还能减少对环境的影响。
|
8月前
|
机器学习/深度学习 数据采集 算法
利用机器学习优化数据中心的能耗管理
在数据中心管理和运营领域,能耗优化是提高经济效益和环境可持续性的关键。本文提出了一种基于机器学习的方法来优化数据中心的能源消耗,通过实时监控与智能调节系统参数以降低总体能耗。研究采用多种算法对比分析,包括监督式学习、非监督式学习以及强化学习,并在此基础上设计出一套综合策略。该策略不仅提升了能效比(PUE),还保证了系统的高可靠性和性能稳定性。文章的结构首先介绍数据中心能耗管理的重要性,然后详细阐述所提出的机器学习模型及其实现过程,最后通过实验结果验证了方法的有效性。
|
8月前
|
机器学习/深度学习 存储 大数据
利用机器学习优化数据中心的能效管理
【2月更文挑战第17天】 在数据中心的运营过程中,能效管理是维持可持续性和成本效益的关键。本文探讨了一种基于机器学习的方法来优化数据中心的能源使用效率。通过分析历史能耗数据和实时工作负载信息,构建了一个预测模型来指导冷却系统的动态调整,以减少不必要的能源消耗。实验结果表明,该方法能够有效降低能耗,同时保证数据中心的性能和可靠性。
77 2
|
存储 资源调度 Kubernetes
新书自荐《深入集群:大型数据中心资源调度与管理》
深入集群 大型数据中心资源调度与管理,已经第2版了(2021-10月)。之前在ata和百晓生发布了新书自荐,这次同步到社区。
747 1
新书自荐《深入集群:大型数据中心资源调度与管理》
|
存储 监控 网络协议
「数据中心」数据中心脊页架构:数据中心结构管理、自动化和总结
「数据中心」数据中心脊页架构:数据中心结构管理、自动化和总结