Jumping Monkey
Time Limit: 8000/4000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others)
Total Submission(s): 747 Accepted Submission(s): 360
Problem Description
There is a tree with n nodes and n−1 edges that make all nodes connected. Each node i has a distinct weight ai. A monkey is jumping on the tree. In one jump, the monkey can jump from node u to node v if and only if av is the greatest of all nodes on the shortest path from node u to node v. The monkey will stop jumping once no more nodes can be reached.
For each integer k ∈ [ 1 , n ] k∈[1,n]k∈[1,n], calculate the maximum number of nodes the monkey can reach if he starts from node k.
Input
The first line of the input contains an integer T (1≤T≤104), representing the number of test cases.
The first line of each test case contains an integer n (1≤n≤105), representing the number of nodes.
Each of the following n−1 lines contains two integers u,v ( 1 ≤ u , v ≤ n ) , representing an edge connecting node u and node v. It is guaranteed that the input will form a tree.
The next line contains n distinct integers a1,a2,…,an (1≤ai≤109), representing the weight of each node.
It is guaranteed that the sum of n over all test cases does not exceed 8×105.
Output
For each test case, output n lines. The k-th line contains an integer representing the answer when the monkey starts from node k.
Sample Input
2 3 1 2 2 3 1 2 3 5 1 2 1 3 2 4 2 5 1 4 2 5 3
Sample Output
3 2 1 4 2 3 1 3
Hint
For the second case of the sample, if the monkey starts from node 1 11, he can reach at most 4 44 nodes in the order of 1 → 3 → 2 → 4 1 \to 3 \to 2 \to 41→3→2→4.
#define lowbit(x) (x & (-x)) #define Clear(x,val) memset(x,val,sizeof x) vector<int> vet[maxn]; vector<int> after[maxn];/// save the ans tree int fa[maxn], n; bool vis[maxn]; void init() { for (int i = 1; i <= n; i++) { fa[i] = i, vis[i] = 0; vet[i].clear(); after[i].clear(); } } int find(int x) { if (x == fa[x]) return x; else return fa[x] = find(fa[x]); } typedef pair<ll, int> PII; PII a[maxn]; int ans[maxn]; void getDepth(int cur, int faNode, int depth) { ans[cur] = depth; for (int to : after[cur]) { if (to == faNode) continue; getDepth(to, cur, depth + 1); } } int main() { int _ = read; while (_--) { n = read; init(); for (int i = 1; i < n; i++) { int u = read, v = read; vet[u].push_back(v); vet[v].push_back(u); } for (int i = 1; i <= n; i++) { a[i].first = read; a[i].second = i; } sort(a + 1, a + 1 + n); for (int i = 1; i <= n; i++) { int u = a[i].second; for (int v : vet[u]) { if (vis[v]) { int fav = find(v); fa[fav] = u; after[u].push_back(fav); } } vis[u] = 1; } getDepth(a[n].second, 0, 1); for (int i = 1; i <= n; i++) printf("%d\n", ans[i]); } return 0; } /** 2 3 1 2 2 3 1 2 3 5 1 2 1 3 2 4 2 5 1 4 2 5 3 **/