Android Studio Profiler Memory (内存分析工具)的简单使用及问题分析

简介: Android Studio Profiler Memory (内存分析工具)的简单使用及问题分析

Memory Profiler 是 Android Studio自带的内存分析工具,可以帮助开发者很好的检测内存的使用,在出现问题时,也能比较方便的分析定位问题,不过在使用的时候,好像并非像自己一开始设想的样子。


如何查看整体的内存使用概况


如果想要看一个APP整体内存的使用,看APP heap就可以了,不过需要注意Shallow Size跟Retained Size是意义,另外native消耗的内存是不会被算到Java堆中去的。


image.png

  • Allocations:堆中的实例数。
  • Shallow Size:此堆中所有实例的总大小(以字节为单位)。其实算是比较真实的java堆内存
  • Retained Size:为此类的所有实例而保留的内存总大小(以字节为单位)。这个解释并不准确,因为Retained Size会有大量的重复统计
  • native size:8.0之后的手机会显示,主要反应Bitmap所使用的像素内存(8.0之后,转移到了native)


举个例子,创建一个List的场景,有一个ListItem40MClass类,自身占用40M内存,每个对象有个指向下一个ListItem40MClass对象的引用,从而构成List,

class ListItem40MClass {
    byte[] content = new byte[1000 * 1000 * 40];
    ListItem40MClass() {
        for (int i = 0; i < content.length; i++) {
            content[i] = 1;
        }
    }
    @Override
    protected void finalize() throws Throwable {
        super.finalize();
    }
    ListItem40MClass next;
}
@OnClick(R.id.first)
void first() {
    if (head == null) {
        head = new ListItem40MClass();
    } else {
        ListItem40MClass tmp = head;
        while (tmp.next != null) {
            tmp = tmp.next;
        }
        tmp.next = new ListItem40MClass();
    }
}

我们创建三个这样的对象,并形成List,示意如下


A1->next=A2
A2->next=A3 
A3->next= null

这个时候用Android Profiler查看内存,会看到如下效果:Retained Size统计要比实际3个ListItem40MClass类对象的大小大的多,如下图:


image.png可以看到就总量而言Shallow Size基本能真是反应Java堆内存,而Retained Size却明显要高出不少, 因为Retained Size统计总内存的时候,基本不能避免重复统计的问题,比如:A对象有B对象的引用在计算总的对象大小的时候,一般会多出一个B,就像上图,有个3个约40M的int[]对象,占内存约120M,而每个ListItem40MClass对象至少会再统计一次40M,这里说的是至少,因为对象间可能还有其他关系。我们看下单个类的内存占用-Instance View


  • Depth:从任意 GC 根到所选实例的最短 hop 数。
  • Shallow Size:此实例的大小。
  • Retained Size:此实例支配的内存大小(根据 dominator 树)。


可以看到Head本身的Retained Size是120M ,Head->next 是80M,最后一个ListItem40MClass对象是40M,因为每个对象的Retained Size除了包括自己的大小,还包括引用对象的大小,整个类的Retained Size大小累加起来就大了很多,所以如果想要看整体内存占用,看Shallow Size还是相对准确的,Retained Size可以用来大概反应哪种类占的内存比较多,仅仅是个示意,不过还是Retained Size比较常用,因为Shallow Size的大户一般都是String,数组,基本类型意义不大,如下。

image.png


FinalizerReference大小跟内存使用及内存泄漏的关系


之前说Retained Size是此实例支配的内存大小,其实在Retained Size的统计上有很多限制,比如Depth:从任意 GC 根到所选实例的最短hop数,一个对象的Retained Size只会统计Depth比自己大的引用,而不会统计小的,这个可能是为了避免重复统计而引入的,但是其实Retained Size在整体上是免不了重复统计的问题,所以才会右下图的情况:

image.png

FinalizerReference中refrent的对象的retain size是40M,但是没有被计算到FinalizerReference的retain size中去,而且就图表而言FinalizerReference的意义其实不大,FinalizerReference对象本身占用的内存不大,其次FinalizerReference的retain size统计的可以说是FinalizerReference的重复累加的和,并不代表其引用对象的大小,仅仅是ReferenceQueue queue中ReferenceQueue的累加,

public final class FinalizerReference<T> extends Reference<T> {
    // This queue contains those objects eligible for finalization.
    public static final ReferenceQueue<Object> queue = new ReferenceQueue<Object>();
    // Guards the list (not the queue).
    private static final Object LIST_LOCK = new Object();
    // This list contains a FinalizerReference for every finalizable object in the heap.
    // Objects in this list may or may not be eligible for finalization yet.
    private static FinalizerReference<?> head = null;
    // The links used to construct the list.
    private FinalizerReference<?> prev;
    private FinalizerReference<?> next;
    // When the GC wants something finalized, it moves it from the 'referent' field to
    // the 'zombie' field instead.
    private T zombie;
    public FinalizerReference(T r, ReferenceQueue<? super T> q) {
        super(r, q);
    }
    @Override public T get() {
        return zombie;
    }
    @Override public void clear() {
        zombie = null;
    }
    public static void add(Object referent) {
        FinalizerReference<?> reference = new FinalizerReference<Object>(referent, queue);
        synchronized (LIST_LOCK) {
            reference.prev = null;
            reference.next = head;
            if (head != null) {
                head.prev = reference;
            }
            head = reference;
        }
    }
    public static void remove(FinalizerReference<?> reference) {
        synchronized (LIST_LOCK) {
            FinalizerReference<?> next = reference.next;
            FinalizerReference<?> prev = reference.prev;
            reference.next = null;
            reference.prev = null;
            if (prev != null) {
                prev.next = next;
            } else {
                head = next;
            }
            if (next != null) {
                next.prev = prev;
            }
        }
    }
...
}

每个FinalizerReference retained size 都是其next+ FinalizerReference的shallowsize,反应的并不是其refrent对象内存的大小,如下:


image.png


因此FinalizerReference越大只能说明需要执行finalize的对象越多,并且对象是通过强引用被持有,等待Deamon线程回收。可以通过该下代码试验下:

 class ListItem40MClass {
        byte[] content = new byte[5];
        ListItem40MClass() {
            for (int i = 0; i < content.length; i += 1000) {
                content[i] = 1;
            }
        }
        @Override
        protected void finalize() throws Throwable {
            super.finalize();
            LogUtils.v("finalize ListItem40MClass");
        }
        ListItem40MClass next;
    }
    @OnClick(R.id.first)
    void first() {
        if (head == null) {
            head = new ListItem40MClass();
        } else {
            for (int i = 0; i < 1000; i++) {
                ListItem40MClass tmp = head;
                while (tmp.next != null) {
                    tmp = tmp.next;
                }
                tmp.next = new ListItem40MClass();
            }
        }
    }

多次点击后,可以看到finalize的对象线性上升,而FinalizerReference的retain size却会指数上升。

image.png

同之前40M的对比下,明显上一个内存占用更多,但是其实FinalizerReference的retain size却更小。再来理解FinalizerReference跟内存泄漏的关系就比价好理解了,回收线程没执行,实现了finalize方法的对象一直没有被释放,或者很迟才被释放,这个时候其实就算是泄漏了。


如何看Profiler的Memory图


  • 第一:看整体Java内存使用看shallowsize就可以了
  • 第二:想要看哪些对象占用内存较多,可以看Retained Size,不过看Retained Size的时候,要注意过滤一些无用的比如  FinalizerReference,基本类型如:数组对象


比如下图:Android 6.0 nexus5

image.png

从整体概况上看,Java堆内存的消耗是91兆左右,而整体的shallow size大概80M,其余应该是一些堆栈基础类型的消耗,而在Java堆栈中,占比最大的是byte[],其次是Bitmap,bitmap中的byte[]也被算进了前面的byte[] retain size中,而FinilizerReference的retain size已经大的不像话,没什么参考价值,可以看到Bitmap本身其实占用内存很少,主要是里面的byte[],当然这个是Android8.0之前的bitmap,8.0之后,bitmap的内存分配被转移到了native。


再来对比下Android8.0的nexus6p:可以看到占大头的Bitmap的内存转移到native中去了,降低了OOM风险。

image.png

并且在Android 8.0或更高版本中,可以更清楚的查看对象及内存的动态分配,而且不用dump内存,直接选中某一段,就可以看这个时间段的内存分配:如下

image.png

如上图,在时间点1 ,我们创建了一个对象new ListItem40MClass(),ListItem40MClass有一个比较占内存的byte数组,上面折线升高处有新对象创建,然后会发现内存大户是byte数组,而最新的byte数组是在ListItem40MClass对象创建的时候分配的,这样就能比较方便的看到,到底是哪些对象导致的内存上升。


总结


  • 总体Java内存使用看shallow size
  • retained size只是个参考,不准确,存在各种重复统计问题
  • FinalizerReference retained size 大小极其不准确,而且其强引用的对象并没有被算进去,不过finilize确实可能导致内存泄漏
  • native size再8.0之后,对Bitmap的观测有帮助。


目录
相关文章
|
3月前
|
Java Android开发 C++
Android Studio JNI 使用模板:c/cpp源文件的集成编译,快速上手
本文提供了一个Android Studio中JNI使用的模板,包括创建C/C++源文件、编辑CMakeLists.txt、编写JNI接口代码、配置build.gradle以及编译生成.so库的详细步骤,以帮助开发者快速上手Android平台的JNI开发和编译过程。
234 1
|
1月前
|
Java Unix Linux
Android Studio中Terminal运行./gradlew clean build提示错误信息
遇到 `./gradlew clean build`命令执行出错时,首先应检查错误信息的具体内容,这通常会指向问题的根源。从权限、环境配置、依赖下载、版本兼容性到项目配置本身,逐一排查并应用相应的解决措施。记住,保持耐心,逐步解决问题,往往复杂问题都是由简单原因引起的。
222 2
|
2月前
|
XML IDE 开发工具
🔧Android Studio高级技巧大公开!效率翻倍,编码不再枯燥无味!🛠️
【9月更文挑战第11天】在软件开发领域,Android Studio凭借其强大的功能成为Android开发者的首选IDE。本文将揭示一些提升开发效率的高级技巧,包括自定义代码模板、重构工具、高级调试技巧及多模块架构。通过对比传统方法,这些技巧不仅能简化编码流程,还能显著提高生产力。例如,自定义模板可一键插入常用代码块;重构工具能智能分析并安全执行代码更改;高级调试技巧如条件断点有助于快速定位问题;多模块架构则提升了大型项目的可维护性和团队协作效率。掌握这些技巧,将使你的开发之旅更加高效与愉悦。
64 5
|
3月前
|
编解码 Android开发
【Android Studio】使用UI工具绘制,ConstraintLayout 限制性布局,快速上手
本文介绍了Android Studio中使用ConstraintLayout布局的方法,通过创建布局文件、设置控件约束等步骤,快速上手UI设计,并提供了一个TV Launcher界面布局的绘制示例。
55 1
|
存储 编解码 Android开发
Android内存优化-Bitmap内存优化
在日常开发中,我们不免会使用到Bitmap,而bitmap确实实在在的是内存使用的 “大户”,如何更好的使用 bitmap,减少其对 App内存的使用,是我们开发中不可回避的问题。
186 0
Android内存优化-Bitmap内存优化
|
存储 编解码 缓存
|
3天前
|
搜索推荐 Android开发 开发者
探索安卓开发中的自定义视图:打造个性化UI组件
【10月更文挑战第39天】在安卓开发的世界中,自定义视图是实现独特界面设计的关键。本文将引导你理解自定义视图的概念、创建流程,以及如何通过它们增强应用的用户体验。我们将从基础出发,逐步深入,最终让你能够自信地设计和实现专属的UI组件。
|
5天前
|
Android开发 Swift iOS开发
探索安卓与iOS开发的差异和挑战
【10月更文挑战第37天】在移动应用开发的广阔舞台上,安卓和iOS这两大操作系统扮演着主角。它们各自拥有独特的特性、优势以及面临的开发挑战。本文将深入探讨这两个平台在开发过程中的主要差异,从编程语言到用户界面设计,再到市场分布的不同影响,旨在为开发者提供一个全面的视角,帮助他们更好地理解并应对在不同平台上进行应用开发时可能遇到的难题和机遇。