膜拜(离散化差分模板题)

简介: 题目描述小鱼有 n 名优秀的粉丝。粉丝们得知小鱼将会在一条直线上出现,打算去膜他。为了方便,粉丝们在这条直线上建立数轴。第 i 名粉丝有一个侦查区间[li,ri] 。如果小鱼在 j(li≤j≤ri) 处出现,这名粉丝将立刻发现并膜他。小鱼希望膜他的人越多越好,但是他不能分身,因此只能选择一个位置出现。小鱼想知道自己最多能被多少个人膜。

题目描述


小鱼有 n 名优秀的粉丝。


粉丝们得知小鱼将会在一条直线上出现,打算去膜他。为了方便,粉丝们在这条直线上建立数轴。


第 i 名粉丝有一个侦查区间[li,ri] 。如果小鱼在 j(li≤j≤ri) 处出现,这名粉丝将立刻发现并膜他。


小鱼希望膜他的人越多越好,但是他不能分身,因此只能选择一个位置出现。


小鱼想知道自己最多能被多少个人膜。


输入


第一行一个整数n —— 粉丝的个数。


接下来 n 行,每行两个整数 li,ri ,分别表示第 i 名粉丝的侦查区间的两个端点。两个数之间用空格隔开。


输出


共一行,一个整数,表示小鱼最多能被多少人膜。


样例输入


4
3 5
4 8
1 2
5 10


样例输出


3


提示


样例解释:

如图所示,小鱼可出现在5处,此时第1,2,4号粉丝可以膜他。小鱼最多只能被3个粉丝膜。

微信图片_20220530200800.png

对于20%的数据,n≤2

对于60%的数据,n≤2000

对于100%的数据,1 ≤ n ≤ 5 × 104,1 ≤ li ≤ ri <230

这个题很容易就可以想起来差分数组,但是以看数据范围,有点感人,因此需要进行离散化

#include <bits/stdc++.h>
using namespace std;
#define wuyt main
typedef long long ll;
template<class T> inline T min(T &x,const T &y){return x>y?y:x;}
template<class T> inline T max(T &x,const T &y){return x<y?y:x;}
ll read(){ll c = getchar(),Nig = 1,x = 0;while(!isdigit(c) && c!='-')c = getchar();
    if(c == '-')Nig = -1,c = getchar();
    while(isdigit(c))x = ((x<<1) + (x<<3)) + (c^'0'),c = getchar();
    return Nig*x;}
#define read read()
ll maxx=-1,minn=inf;
ll num[maxn],a[maxn],num2[maxn];
ll res,ans;
int n;
ll cnt[maxn];
pair<ll,ll> together[maxn];
vector <ll> vet;
int main()
{
    n=read;
    for(int i=1;i<=n;i++){
        ll left=read,right=read;
        vet.push_back(left);
        vet.push_back(right);
        together[i]={left,right};
    }
    sort(vet.begin(),vet.end());
    vet.erase(unique(vet.begin(),vet.end()),vet.end());
    for(int i=1;i<=n;i++){
        ll left=together[i].first;
        ll right=together[i].second;
        ll templeft=lower_bound(vet.begin(),vet.end(),left)-vet.begin();
        ll tempright=lower_bound(vet.begin(),vet.end(),right)-vet.begin();
        num[templeft]+=1;
        num[tempright+1]-=1;
    }
    int len=vet.size();
    for(int i=1;i<len;i++) num[i]+=num[i-1];
    ans=num[0];
    for(int i=1;i<len;i++) if(num[i]>=ans) ans=num[i];
    cout<<ans<<endl;
    return 0;
}


开发者涨薪指南

48位大咖的思考法则、工作方式、逻辑体系

目录
相关文章
|
存储 算法 C++
C++基础算法离散化及区间合并篇
C++基础算法离散化及区间合并篇
169 0
|
8月前
|
Shell
【高数定积分求解旋转体体积】 —— (上)高等数学|定积分|柱壳法|学习技巧
【高数定积分求解旋转体体积】 —— (上)高等数学|定积分|柱壳法|学习技巧
154 0
差分方程模型:兔子繁殖问题(斐波拉契数列)
差分方程模型:兔子繁殖问题(斐波拉契数列)
167 0
LDUOJ——山(计算几何+二分+精度)
LDUOJ——山(计算几何+二分+精度)
94 0
[物理学与PDEs]第5章习题9 伴随矩阵的特征值
设 $3\times 3$ 阵 ${\bf A}$ 的特征值为 $\lm_1,\lm_2,\lm_3$, 证明 $\cof {\bf A}$ 的特征值为 $$\bex \lm_2\lm_3,\quad \lm_3\lm_1,\quad \lm_1\lm_2.
715 0
|
资源调度
[物理学与PDEs]第5章习题3 第二 Piola 应力张量的对称性
试证明: 在物质描述下, 动量矩守恒定律等价于第二 Piola 应力张量的对称性.   证明: 由 $$\beex \bea \int_{G_t}\rho\sex{{\bf y}\times\cfrac{\rd {\bf v}}{\rd t}}\rd y &=\int_{G_0} \rho_0\...
1047 0
[物理学与PDEs]第3章第5节 一维磁流体力学方程组 5.2 一维磁流体力学方程组的 Lagrange 形式
由 $$\bex \cfrac{\p \rho}{\p t}&+u_1\cfrac{\p \rho}{\p x}+\rho\cfrac{\p u_1}{\p x}=0, \eex$$ 我们可以引进 Lebesgue 坐标 $(t',m)$, 而将一维磁流体力学方程组化为 Lagrange 形式, 而有较简单的形式.
737 0
|
资源调度
[物理学与PDEs]第3章第5节 一维磁流体力学方程组 5.1 一维磁流体力学方程组
1.  当磁流体力学方程组中的量只依赖于 $t$ 及一个空间变量时, 该方程组称为一维的.     2.  一维磁流体力学方程组 $$\beex \bea \cfrac{\p H_2}{\p t}& +u_1\cfrac{\p H_2}{\p x} +H_2\cfrac{\p u_1}{\p ...
724 0
|
算法框架/工具
[物理学与PDEs]第4章习题4 一维理想反应流体力学方程组的守恒律形式及其 R.H. 条件
写出在忽略粘性与热传导性, 即设 $\mu=\mu'=\kappa=0$ 的情况, 在 Euler 坐标系下具守恒律形式的一维反应流动力学方程组. 由此求出在解的强间断线上应满足的 R.H. 条件 (见第二章 $\S 4$), 并证明越过强间断线, 函数 $Z$ 保持连续.
856 0
[物理学与PDEs]第3章习题6 Lagrange 坐标下的一维理想磁流体力学方程组的数学结构
试讨论 Lagrange 形式下的一维理想磁流体力学方程组 (5. 33)-(5. 39) 的类型.   解答: 由 (5. 33), (5. 39) 知 $$\bex 0=\cfrac{\p p}{\p \tau}\sex{\cfrac{\p \tau}{\p t'}-\cfrac{\p u_...
689 0