hash 碰撞冲突
hashCode 方法是为了产生不同的 hash 值, 但是当两个对象的 hash 值一样时,会发生碰撞冲突
Hash 冲突的解决办法
- 开放地址法;
- 再hash的方法;
- 拉链法;
- 建立公共溢出区法;
开发地址法
基本思想:当发生地址冲突的时候,按照某种方法继续探测哈希表中的其他存储单元,直到找到空位置为止;
测试代码:
public class Test1 { //线性探测再散列 public static int[] m1(int[] arr){ if (arr==null || arr.length == 0){ return null; } int[] arr1 = new int[arr.length]; for (int i = 0;i<arr.length;i++){ int p = arr[i]%(arr1.length); if (arr1[p]==0){ arr1[p] = arr[i]; }else { for (int j = 1 ; j<5;j++){ int p1 = (p+j)%(arr1.length); if (arr1[p1]==0){ arr1[p1] = arr[i]; } } } } return arr1; } //二次探测再散列 public static int[] m2(int[] arr){ if (arr==null || arr.length == 0){ return null; } int[] arr1 = new int[arr.length]; for (int i = 0;i<arr.length;i++){ int p = arr[i]%(arr1.length); if (arr1[p]==0){ arr1[p] = arr[i]; }else { for (int j = 1 ; j <= 5/2;j++){ int p1 = (p+j*j)%(arr1.length); int p2 = (p-j*j)%(arr1.length); if (p1<=arr.length && arr1[p1]==0){ arr1[p1] = arr[i]; } if (p2>=0 && arr1[p2]==0){ arr1[p2] = arr[i]; } } } } return arr1; } //伪随机再散列 public static int[] m3(int[] arr){ if (arr==null || arr.length==0){ return null; } int[] arr1 = new int[arr.length]; for (int i = 0;i<arr.length;i++){ int p = arr[i]%(arr1.length); if (arr1[p]==0){ arr1[p] = arr[i]; }else { while (true){ int p1 = (int) ((p+arr.length*Math.random())%(arr1.length)); if (p1<=arr.length-1 && arr1[p1]==0){ arr1[p1] = arr[i]; break; } } } } return arr1; } //数组输出函数 public static void arrayPrint(int[] arr){ if (arr == null){ System.out.println("数组为null"); }else { for (int k = 0 ;k<arr.length;k++){ System.out.print(arr[k]+" "); } System.out.println(); } } public static void main(String[] args){ int[] arr = {13,45,34,56,33}; int[] arr1 = m1(arr); int[] arr2 = m2(arr); int[] arr3 = m3(arr); arrayPrint(arr2); arrayPrint(arr1); arrayPrint(arr3); } }
其实 ThreadLocalMap 中的就用的开放地址法,不断的进行线性探测, 通过nextIndex()不断获取table上得槽位,直到遇到第一个为null的地方,此处也将是存放具体entry的位置。
private void set(ThreadLocal<?> key, Object value) { // We don't use a fast path as with get() because it is at // least as common to use set() to create new entries as // it is to replace existing ones, in which case, a fast // path would fail more often than not. Entry[] tab = table; int len = tab.length; int i = key.threadLocalHashCode & (len-1); for (Entry e = tab[i]; e != null; e = tab[i = nextIndex(i, len)]) { ThreadLocal<?> k = e.get(); if (k == key) { e.value = value; return; } if (k == null) { replaceStaleEntry(key, value, i); return; } } tab[i] = new Entry(key, value); int sz = ++size; if (!cleanSomeSlots(i, sz) && sz >= threshold) rehash(); }
公式
所用公式 H(key) = (H(key) + di)mod m;其中i = 1、2、3.....k(k<m-1),H(key)为关键字key的直接hash地址;M为hash表的长度;
di为再次探测时的地址增量;根据di的不同取法,有不同的称呼;
- 线性探测再散列:di = 1、2、3、4....k (k<m-1)
- 二次探测再散列:di = 1^2,-1^2,2^2,-2^2.....k^2,-k^2 (k<=m/2)
- 伪随机再散列:di = 伪随机数
再 hash 法
基本思想:有多个不同的Hash函数,当发生冲突时,使用第二个,第三个,…,等哈希函数计算地址,直到无冲突。虽然不易发生聚集,但是增加了计算时间
链地址法
基本思想:每个哈希表节点都有一个next指针,多个哈希表节点可以用next指针构成一个单向链表,被分配到同一个索引上的多个节点可以用这个单向链表连接起来 HashMap 中 hash 冲突的解决办法,就是链地址法, 如果当前桶上发生 hash 冲突,就,将当前值放到链表尾。
源码示例:
final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) { Node<K,V>[] tab; Node<K,V> p; int n, i; if ((tab = table) == null || (n = tab.length) == 0) n = (tab = resize()).length; if ((p = tab[i = (n - 1) & hash]) == null) tab[i] = newNode(hash, key, value, null); else { Node<K,V> e; K k; if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) e = p; else if (p instanceof TreeNode) e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value); else { for (int binCount = 0; ; ++binCount) { if ((e = p.next) == null) { p.next = newNode(hash, key, value, null); if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st treeifyBin(tab, hash); break; } if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) break; p = e; } } if (e != null) { // existing mapping for key V oldValue = e.value; if (!onlyIfAbsent || oldValue == null) e.value = value; afterNodeAccess(e); return oldValue; } } ++modCount; if (++size > threshold) resize(); afterNodeInsertion(evict); return null; }
建立公共溢出区
基本思想:将 hash 表为基本表和溢出表两部分,凡是和基本表冲突发生冲突的元素,一律填入溢出表。