JavaScript 数据结构与算法之美 - 非线性表中的树、堆是干嘛用的 ?其数据结构是怎样的 ?(上)

简介: JavaScript 数据结构与算法之美 - 非线性表中的树、堆是干嘛用的 ?其数据结构是怎样的 ?(上)

1. 前言


想学好前端,先练好内功,内功不行,就算招式练的再花哨,终究成不了高手。

非线性表(树、堆),可以说是前端程序员的内功,要知其然,知其所以然。


笔者写的 JavaScript 数据结构与算法之美 系列用的语言是 JavaScript ,旨在入门数据结构与算法和方便以后复习。


非线性表中的树、堆是干嘛用的 ?其数据结构是怎样的 ?


希望大家带着这两个问题阅读下文。


2. 树


微信图片_20220513105643.png


的数据结构就像我们生活中的真实的树,只不过是倒过来的形状。


术语定义


  • 节点:树中的每个元素称为节点,如 A、B、C、D、E、F、G、H、I、J。
  • 父节点:指向子节点的节点,如 A。
  • 子节点:被父节点指向的节点,如 A 的孩子 B、C、D。
  • 父子关系:相邻两节点的连线,称为父子关系,如 A 与 B,C 与 H,D 与 J。
  • 根节点:没有父节点的节点,如 A。
  • 叶子节点:没有子节点的节点,如 E、F、G、H、I、J。
  • 兄弟节点:具有相同父节点的多个节点称为兄弟节点,如 B、C、D。
  • 节点的高度:节点到叶子节点的最长路径所包含的边数。
  • 节点的深度:根节点到节点的路径所包含的边数。
  • 节点层数:节点的深度 +1(根节点的层数是 1 )。
  • 树的高度:等于根节点的高度。
  • 森林: n 棵互不相交的树的集合。


微信图片_20220513105700.png


高度是从下往上度量,比如一个人的身高 180cm ,起点就是从 0 开始的。


深度是从上往下度量,比如泳池的深度 180cm ,起点也是从 0 开始的。


高度和深度是带有字的,都是从 0 开始计数的。


而层数的计算,是和我们平时的楼层的计算是一样的,最底下那层是第 1 层,是从 1 开始计数的,所以根节点位于第 1 层,其他子节点依次加 1。


二叉树分类


微信图片_20220513105721.png


二叉树


  • 每个节点最多只有 2 个子节点的树,这两个节点分别是左子节点和右子节点。如上图中的 1、 2、3。


不过,二叉树并不要求每个节点都有两个子节点,有的节点只有左子节点,有的节点只有右子节点。以此类推,自己想四叉树、八叉树的结构图。


满二叉树


  • 一种特殊的二叉树,除了叶子节点外,每个节点都有左右两个子节点,这种二叉树叫做满二叉树。如上图中的 2。

完全二叉树


  • 一种特殊的二叉树,叶子节点都在最底下两层,最后一层叶子节都靠排列,并且除了最后一层,其他层的节点个数都要达到最大,这种二叉树叫做完全二叉树。如上图的 3。


完全二叉树与不是完全二叉树的区分比较难,所以对比下图看看。


微信图片_20220513105743.png



之前的文章 栈内存与堆内存 、浅拷贝与深拷贝 中有说到:JavaScript 中的引用类型(如对象、数组、函数等)是保存在堆内存中的对象,值大小不固定,栈内存中存放的该对象的访问地址指向堆内存中的对象,JavaScript 不允许直接访问堆内存中的位置,因此操作对象时,实际操作对象的引用。


那么到底是什么呢 ?其数据结构又是怎样的呢 ?


堆其实是一种特殊的树。只要满足这两点,它就是一个堆。


  • 堆是一个完全二叉树。


完全二叉树:除了最后一层,其他层的节点个数都是满的,最后一层的节点都靠左排列。


  • 堆中每一个节点的值都必须大于等于(或小于等于)其子树中每个节点的值。

也可以说:堆中每个节点的值都大于等于(或者小于等于)其左右子节点的值。这两种表述是等价的。


对于每个节点的值都大于等于子树中每个节点值的堆,我们叫作大顶堆。对于每个节点的值都小于等于子树中每个节点值的堆,我们叫作小顶堆


微信图片_20220513105816.png


其中图 1 和 图 2 是大顶堆,图 3 是小顶堆,图 4 不是堆。除此之外,从图中还可以看出来,对于同一组数据,我们可以构建多种不同形态的堆。


二叉查找树(Binary Search Tree)


  • 一种特殊的二叉树,相对较小的值保存在左节点中,较大的值保存在右节点中,叫二叉查找树,也叫二叉搜索树。


二叉查找树是一种有序的树,所以支持快速查找、快速插入、删除一个数据。

下图中, 3 个都是二叉查找树,


微信图片_20220513105835.png


平衡二叉查找树


  • 平衡二叉查找树:二叉树中任意一个节点的左右子树的高度相差不能大于 1

从这个定义来看,完全二叉树、满二叉树其实都是平衡二叉树,但是非完全二叉树也有可能是平衡二叉树。


平衡二叉查找树中平衡的意思,其实就是让整棵树左右看起来比较对称、比较平衡,不要出现左子树很高、右子树很矮的情况。这样就能让整棵树的高度相对来说低一些,相应的插入、删除、查找等操作的效率高一些。


平衡二叉查找树其实有很多,比如,Splay Tree(伸展树)、Treap(树堆)等,但是我们提到平衡二叉查找树,听到的基本都是红黑树。


微信图片_20220513105851.png


红黑树(Red-Black Tree)


红黑树中的节点,一类被标记为黑色,一类被标记为红色。除此之外,一棵红黑树还需要满足这样几个要求:


  • 根节点是黑色的。
  • 每个叶子节点都是黑色的空节点(NIL),也就是说,叶子节点不存储数据。
  • 任何相邻的节点都不能同时为红色,也就是说,红色节点是被黑色节点隔开的。
  • 每个节点,从该节点到达其可达叶子节点的所有路径,都包含相同数目的黑色节点。

下面两个都是红黑树。


微信图片_20220513105905.png


存储


完全二叉树的存储


  • 链式存储


每个节点由 3 个字段,其中一个存储数据,另外两个是指向左右子节点的指针。

我们只要拎住根节点,就可以通过左右子节点的指针,把整棵树都串起来。

这种存储方式比较常用,大部分二叉树代码都是通过这种方式实现的。


微信图片_20220513105919.png


  • 顺序存储


用数组来存储,对于完全二叉树,如果节点 X 存储在数组中的下标为 i ,那么它的左子节点的存储下标为 2 i ,右子节点的下标为 2 i + 1,反过来,下标 i / 2 位置存储的就是该节点的父节点。


注意,根节点存储在下标为 1 的位置。完全二叉树用数组来存储是最省内存的方式。


微信图片_20220513105940.png

相关文章
|
17天前
|
算法
树的遍历算法有哪些?
不同的遍历算法适用于不同的应用场景。深度优先搜索常用于搜索、路径查找等问题;广度优先搜索则在图的最短路径、层次相关的问题中较为常用;而二叉搜索树的遍历在数据排序、查找等方面有重要应用。
22 2
|
24天前
|
数据采集 存储 JavaScript
如何使用Puppeteer和Node.js爬取大学招生数据:入门指南
本文介绍了如何使用Puppeteer和Node.js爬取大学招生数据,并通过代理IP提升爬取的稳定性和效率。Puppeteer作为一个强大的Node.js库,能够模拟真实浏览器访问,支持JavaScript渲染,适合复杂的爬取任务。文章详细讲解了安装Puppeteer、配置代理IP、实现爬虫代码的步骤,并提供了代码示例。此外,还给出了注意事项和优化建议,帮助读者高效地抓取和分析招生数据。
如何使用Puppeteer和Node.js爬取大学招生数据:入门指南
|
12天前
|
算法 C# 索引
C#线性查找算法
C#线性查找算法!
|
1月前
|
前端开发 JavaScript
JS-数据筛选
JS-数据筛选
34 7
|
1月前
|
JavaScript 数据安全/隐私保护
2024了,你会使用原生js批量获取表单数据吗
2024了,你会使用原生js批量获取表单数据吗
50 4
|
1月前
|
存储 算法 关系型数据库
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
这篇文章主要介绍了多路查找树的基本概念,包括二叉树的局限性、多叉树的优化、B树及其变体(如2-3树、B+树、B*树)的特点和应用,旨在帮助读者理解这些数据结构在文件系统和数据库系统中的重要性和效率。
24 0
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
|
1月前
|
存储 缓存 分布式计算
数据结构与算法学习一:学习前的准备,数据结构的分类,数据结构与算法的关系,实际编程中遇到的问题,几个经典算法问题
这篇文章是关于数据结构与算法的学习指南,涵盖了数据结构的分类、数据结构与算法的关系、实际编程中遇到的问题以及几个经典的算法面试题。
33 0
数据结构与算法学习一:学习前的准备,数据结构的分类,数据结构与算法的关系,实际编程中遇到的问题,几个经典算法问题
|
2月前
|
机器学习/深度学习 算法 Java
[算法与数据结构] 谈谈线性查找法~
该文章详细介绍了线性查找法的基本概念与实现方法,通过Java代码示例解释了如何在一个数组中查找特定元素,并分析了该算法的时间复杂度。
|
1月前
|
存储 算法
数据结构与算法学习十六:树的知识、二叉树、二叉树的遍历(前序、中序、后序、层次)、二叉树的查找(前序、中序、后序、层次)、二叉树的删除
这篇文章主要介绍了树和二叉树的基础知识,包括树的存储方式、二叉树的定义、遍历方法(前序、中序、后序、层次遍历),以及二叉树的查找和删除操作。
27 0
下一篇
无影云桌面