【人工智能】人脸识别检测戴口罩实战之初识OpenCV简单操作之图像处理,实现脸部打码【第二课】

简介: 初识OpenCV简单操作之图像处理,获取人脸特征,给图像简单的打码,绘制图形、运算、几何变换、平滑处理、边缘检测

初识OpenCV简单操作之图像处理,获取人脸特征,给图像简单的打码,绘制图形、运算、几何变换、平滑处理、边缘检测

一、获取图像的感兴趣区域

(1)通过像素矩阵直接得到ROI区域

img[140:260,210:340]

(2)对图像ROI域进行赋值

img[180:300,270:400] = face1

获取脸部信息

import cv2

img = cv2.imread('D:\opencvdata\lena.jpg')
face = img[140:260,210:340]

cv2.imshow('img',img)
cv2.imshow('face',face)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述

获取其他特征

由此我们也可以推出,获取鼻子,眼睛,嘴巴等特征
140:260为高
210:340为宽

import cv2

img = cv2.imread('D:\opencvdata\lena.jpg')
face = img[140:260,210:340]
eye = img[140:180,210:340]
mouth = img[220:260,210:340]
nose = img[180:220,210:340]

# img[140:260,210:340] = 0
cv2.imshow('img',img)
cv2.imshow('face',face)
cv2.imshow('eye',eye)
cv2.imshow('nose',nose)
cv2.imshow('mouth',mouth)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述

图像域赋值

import cv2

img = cv2.imread('D:\opencvdata\lena.jpg')
face = img[140:260,210:340]
img[140:260,210:340] = 0
img[140:260,210:340] = 255
cv2.imshow('img',img)
cv2.imshow('face',face)

cv2.waitKey(0)
cv2.destroyAllWindows()

赋值为0,为黑色
在这里插入图片描述
赋值为255,为白色
在这里插入图片描述

对其他特征赋值,简单的打码😁😁
在这里插入图片描述

二、绘制图形

画直线cv2.line()

import cv2
img = cv2.imread(r'D:\opencvdata\b.jpg')
cv2.line(img,(0,0),(400,300),(0,255,0),10)
cv2.imshow('img',img)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述
(0,0) 开始点
(400,300) 结束点
(0,255,0) 颜色
10 粗细

画圆 cv2.circle()

cv2.circle(img,(200,200),100,(0,0,255),10)

在这里插入图片描述
(200,200) 圆心
100 半径
(0,0,255) 颜色
10 粗细

画矩形 cv2 rectal.gle()

cv2.rectangle(img,(10,10),(200,200),(100,100,100),5)

在这里插入图片描述
(10,10) 左上角
(200,200) 右下角
(100,100,100) 颜色
5 粗细

画椭圆 cv2.ellipse()

cv2.ellipse(img,(300,300),(100,50),0,0,360,(0,120,80),3)

在这里插入图片描述
(300,300) 中心
(100,50) 长轴
0 角度
0 开始角度
360 结束角度
(0,120,80) 颜色
3 粗细

添加文字 cv2.putText()

cv2.putText(img,"opencv",(300,400),cv2.FONT_HERSHEY_COMPLEX,2.0,(0,0,255),3)

在这里插入图片描述
"opencv",显示文本
(300,400) 显示位置
cv2.FONT_HERSHEY_COMPLEX,字体类型
2.0,字体大小
(0,0,255),字体颜色
3 粗细

三、图像运算

图像运算就是对图像的每个像素进行处理,图像的运算包括算术运算和逻辑运算,也称为按位运算。
图像的算数运算是指对多幅图你进行加、减、乘、除运算。
图像的逻辑运算是指对多幅图像进行与、或、非、异或运算。
注意:
两个图像在进行运算时,图像的像素大小和类型要完全一致,否则opencv就会报错。

图像加法运算

‘+’

import cv2
img1 = cv2.imread(r'D:\opencvdata\g.jpg')
img2 = cv2.imread(r'D:\opencvdata\t.jpg')

img3 = img2 + img1
cv2.imshow('img',img3)

cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述

cv2.add(img 1,img2)

大于255,对255取模;

img4 = cv2.add(img1,img2)

在这里插入图片描述

cV2.addWeighted(img1,a1pha,img2,beta,gamma)

大于255,以255计数

img5 = cv2.addWeighted(img1,0.3,img2,0.7,0)

0.3和0.7分别为两个图像所占权重
在这里插入图片描述

图像减法运算

‘-’

小于0,对255取模;

img3 = img2 - img1

在这里插入图片描述

cv2.subtract(img 1,img2)

img4 = cv2.subtract(img1,img2)

小于0使用0计数
在这里插入图片描述

图像乘法运算

‘*’

img3 = img2 * img1

在这里插入图片描述

cv2.multiply(img1,img2)


img4 = cv2.multiply(img1,img2)

在这里插入图片描述

图像除法运算

/

img3 = img2 / img1

在这里插入图片描述

cv2.divide(img 1,img2)


img4 = cv2.divide(img1,img2)

在这里插入图片描述

图像按位与操作

cv2.bitwise_and(img1,img2[,mask])

img4 = cv2.bitwise_and(img1,img2)

在这里插入图片描述

图像按位或操作

cv2.bitwise_or(img1,img2[,mask])


img5 = cv2.bitwise_or(img1,img2)

在这里插入图片描述

图像按位取反操作

cv2.bitwise_not(img 1[,mask])


img6 = cv2.bitwise_not(img1)

在这里插入图片描述

图像按位异或操作

cv2.bitwise_xor(img 1,img2[,mask])


img7 = cv2.bitwise_xor(img1,img2)

在这里插入图片描述
更加清晰的看到效果

mask = cv2.imread('D:\opencvdata\m.png',0)

w,h,_ = img1.shape
mask = cv2.resize(mask,(w,h))
img7 = cv2.bitwise_xor(img1,img2,mask=mask)
det = cv2.bitwise_xor(img7,img2)

在这里插入图片描述
在这里插入图片描述

四、图像几何变换

(1)图像缩放

函数:dst = cv2.resize( src, dsize[, fx, fy, interpolation])

参数: src表示源图像;
dsize表示目标图像大小;
fx表示水平轴上的比例因子;
fy表示垂直轴上的比例因子;
interpolation插值方法,共有5种。

interpolation 5种插值方法:
1) INTER_NEAREST-近邻插值法;
2) INTER_LINEAR-双线性插值法(默认);
3) INTER_AREA -区域插值法,基于局部像素的重采样;
4) INTER_CUBIC-三次样条插值,基于4x4像素邻域的3次插值法;
5) INTER_LANCZOS4 -基于8x8像素邻域的Lanczos插值

在使用cv2.resize ()对原始图像进行缩放,
当缩小图像时,使用区域插值方式(INTER_AREA)能够得到最好的效果;
当放大图像时,使用三次样条插值(INTER_CUBIC)方式和双线性插值(INTER_LINEAR)方式都能够取得较好的效果。
三次样条插值方式速度较慢,双线性插值方式速度相对较快且效果并不差。

dst = cv2.resize(img,(1000,500),cv2.INTER_AREA)

在这里插入图片描述

dst = cv2.resize(img,None,fx=0.2,fy=0.3)

在这里插入图片描述

(2)图像翻转

函数: dst = cV2.flip( src, flipCode )

参数: src表示源图像;
flipCode表示翻转方式;
0绕x轴翻转;
1绕y轴翻转;
-1绕x,y轴同时翻转。

import cv2

img = cv2.imread('D:\opencvdata\g.jpg')

dst1 = cv2.flip(img,1)
dst2 = cv2.flip(img,0)
dst3 = cv2.flip(img,-1)

cv2.imshow('img',img)
cv2.imshow('dst1',dst1)
cv2.imshow('dst2',dst2)
cv2.imshow('dst3',dst3)

cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

五、图像平滑

在保留图像原有信息的基础上,过滤并去除掉图像中的噪声,这一过程就是图像的平滑处理,所得图像被称为平滑图像。
平滑处理的基本原理是:将噪声点的像素值处理为其周围临近像素点像素值的临近值。取近似值的方法很多,主要有如下的几种方法:均值滤波、方框滤波、高斯滤波、中值滤波、双边滤波、2D卷积。

cv2. GaussianBlur (img, ksize, sigmaX)

参数:img输入原图;
ksize 高斯内核大小
sigmaX X方向上的高斯核标准偏差

import cv2

img = cv2.imread(r'D:\opencvdata\noise.png')
img2 = cv2.GaussianBlur(img,(7,7),0)

cv2.imshow('img',img)
cv2.imshow('img2',img2)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述

六、图像边缘检测

边缘是指图像中图像像素值变化明显的位置。这些变化明显的位置常常是图像中需要关注的位置,对这些关键位置的检测,就叫做边缘检测。
如果将图像的每一行像素和每一列像素都描述成一个关于灰度值的函数,那么图像的边缘对应在灰度值函数中是函数值突然变大的区域。函数值的变化趋势可以用函数的导数描述。因此可以通过寻找导数值较大的区域去寻找函数中突然变化的区域,进而确定图像中的边缘位置。
通常我们可以把边缘检测分为以下三个类型:
(1)通过计算图像的梯度值来检测图像的边缘,如Sobel算子、Prewitt算子、Roberts算子及差分过缘检测
(2)通过寻求二阶导数中的过零点来检测边缘,如拉普拉斯算子、高普拉普拉斯算子、Canny算子边缘检测。
(3)混合一阶与二阶微分为基础的边缘检测,综合利用一阶微分与二阶微分特征,如Marr-Hildreth边缘检测算子。

cv2. Canny (img, thresholdl, threshold2)

参数: img输入原图
threshold1 國值1
threshold2 國值2

import cv2

img = cv2.imread(r'D:\opencvdata\g.jpg')
img2 = cv2.Canny(img,50,200)
cv2.imshow('img',img)
cv2.imshow('img2',img2)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述
类似素描了👓👓👓!

目录
相关文章
|
5月前
|
算法 计算机视觉
基于qt的opencv实时图像处理框架FastCvLearn实战
本文介绍了一个基于Qt的OpenCV实时图像处理框架FastCvLearn,通过手撕代码的方式详细讲解了如何实现实时人脸马赛克等功能,并提供了结果展示和基础知识回顾。
213 7
|
4月前
|
计算机视觉
Opencv学习笔记(八):如何通过cv2读取视频和摄像头来进行人脸检测(jetson nano)
如何使用OpenCV库通过cv2模块读取视频和摄像头进行人脸检测,并提供了相应的代码示例。
199 1
|
29天前
|
XML 机器学习/深度学习 人工智能
使用 OpenCV 和 Python 轻松实现人脸检测
本文介绍如何使用OpenCV和Python实现人脸检测。首先,确保安装了OpenCV库并加载预训练的Haar特征模型。接着,通过读取图像或视频帧,将其转换为灰度图并使用`detectMultiScale`方法进行人脸检测。检测到的人脸用矩形框标出并显示。优化方法包括调整参数、多尺度检测及使用更先进模型。人脸检测是计算机视觉的基础技术,具有广泛应用前景。
62 10
|
4月前
|
机器学习/深度学习 计算机视觉
目标检测笔记(六):如何结合特定区域进行目标检测(基于OpenCV的人脸检测实例)
本文介绍了如何使用OpenCV进行特定区域的目标检测,包括人脸检测实例,展示了两种实现方法和相应的代码。
135 1
目标检测笔记(六):如何结合特定区域进行目标检测(基于OpenCV的人脸检测实例)
|
4月前
|
机器学习/深度学习 算法 计算机视觉
【Python篇】Python + OpenCV 全面实战:解锁图像处理与视觉智能的核心技能
【Python篇】Python + OpenCV 全面实战:解锁图像处理与视觉智能的核心技能
167 7
|
4月前
|
算法 计算机视觉 Python
圆形检测算法-基于颜色和形状(opencv)
该代码实现了一个圆检测算法,用于识别视频中的红色、白色和蓝色圆形。通过将图像从RGB转换为HSV颜色空间,并设置对应颜色的阈值范围,提取出目标颜色的区域。接着对这些区域进行轮廓提取和面积筛选,使用霍夫圆变换检测圆形,并在原图上绘制检测结果。
132 0
WK
|
6月前
|
计算机视觉 Python
如何使用OpenCV进行基本图像处理
使用OpenCV进行基本图像处理包括安装OpenCV,读取与显示图像,转换图像颜色空间(如从BGR到RGB),调整图像大小,裁剪特定区域,旋转图像,以及应用图像滤镜如高斯模糊等效果。这些基础操作是进行更复杂图像处理任务的前提。OpenCV还支持特征检测、图像分割及对象识别等高级功能。
WK
66 4
|
6月前
|
机器学习/深度学习 算法 机器人
|
6月前
|
机器学习/深度学习 人工智能 监控
利用Python和OpenCV实现实时人脸识别系统
【8月更文挑战第31天】本文将引导您了解如何使用Python结合OpenCV库构建一个简易的实时人脸识别系统。通过分步讲解和示例代码,我们将探索如何从摄像头捕获视频流、进行人脸检测以及识别特定个体。本教程旨在为初学者提供一条明晰的学习路径,帮助他们快速入门并实践人脸识别技术。
|
7月前
|
计算机视觉 人工智能
人工智能问题之人脸识别团队决定使用LangChain来构建一个智能排查助手如何解决
人工智能问题之人脸识别团队决定使用LangChain来构建一个智能排查助手如何解决
51 1