【学习笔记】线程原子性-锁 synchronized的用法(2)

简介: 【学习笔记】线程原子性-锁 synchronized的用法

修饰类

package com.lyy.concurrency.sync;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
public class SynchronizedExample2 {
    // 修饰一个类
    public static void test1(int j){
        synchronized (SynchronizedExample2.class){
            for (int i = 0; i < 10; i++) {
                System.out.println("test1   j:"+j+" — i:"+i);
            }
        }
    }
    public static void main(String[] args) {
        SynchronizedExample2 example1 = new SynchronizedExample2();
        SynchronizedExample2 example2 = new SynchronizedExample2();
        ExecutorService executorService = Executors.newCachedThreadPool();//声明一个线程池
        //加上线程池相当于我们调用了两个线程  l
        //两个线程调用了同一个对象
        executorService.execute(() ->{
            example1.test1(1);
        });
        executorService.execute(() ->{
            example2.test1(2);
        });
    }
}


返回结果:

test1   j:1 — i:0
test1   j:1 — i:1
test1   j:1 — i:2
test1   j:1 — i:3
test1   j:1 — i:4
test1   j:1 — i:5
test1   j:1 — i:6
test1   j:1 — i:7
test1   j:1 — i:8
test1   j:1 — i:9
test1   j:2 — i:0
test1   j:2 — i:1
test1   j:2 — i:2
test1   j:2 — i:3
test1   j:2 — i:4
test1   j:2 — i:5
test1   j:2 — i:6
test1   j:2 — i:7
test1   j:2 — i:8
test1   j:2 — i:9

修饰静态方法:

package com.lyy.concurrency.sync;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
public class SynchronizedExample2 {
    //修饰一个静态方法
    public static  synchronized void test2(int j){
        for (int i = 0; i < 10; i++) {
            System.out.println("test2 j:"+j+" — i:"+i);
        }
    }
    public static void main(String[] args) {
        SynchronizedExample2 example1 = new SynchronizedExample2();
        SynchronizedExample2 example2 = new SynchronizedExample2();
        ExecutorService executorService = Executors.newCachedThreadPool();//声明一个线程池
        //加上线程池相当于我们调用了两个线程  l
        //两个线程调用了同一个对象
        executorService.execute(() ->{
            example1.test2(1);
        });
        executorService.execute(() ->{
            example2.test2(2);
        });
    }
}

返回结果:

test2 j:1 — i:0
test2 j:1 — i:1
test2 j:1 — i:2
test2 j:1 — i:3
test2 j:1 — i:4
test2 j:1 — i:5
test2 j:1 — i:6
test2 j:1 — i:7
test2 j:1 — i:8
test2 j:1 — i:9
test2 j:2 — i:0
test2 j:2 — i:1
test2 j:2 — i:2
test2 j:2 — i:3
test2 j:2 — i:4
test2 j:2 — i:5
test2 j:2 — i:6
test2 j:2 — i:7
test2 j:2 — i:8
test2 j:2 — i:9

案例:

线程不安全案例:

package com.lyy.concurrency.example.count;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Semaphore;
public class CountExample1 {
    //请求总数
    public static int clientTotal = 5000;
//同时并发执行的线程数
    public static int threadTotal = 200;
    //
    public static int count = 0;
    public static void main(String[] args) throws Exception{
        ExecutorService executorService = Executors.newCachedThreadPool();//线程池
        final Semaphore semaphore = new Semaphore(threadTotal);//允许并发的数量
        final CountDownLatch countDownLatch = new CountDownLatch(clientTotal);
        for (int i = 0; i < clientTotal; i++) {
                executorService.execute(() ->{
                    try {
                        semaphore.acquire();//判断线程是否允许被执行
                        add();//当acquire()返回出来值之后才会被执行
                        semaphore.release();
                    } catch (InterruptedException e) {
                            e.printStackTrace();
                    }
                    countDownLatch.countDown();
                });
        }
        countDownLatch.await();
        executorService.shutdown();
        System.out.println("count:"+count);
    }
    private static void add(){
        count++;
    }
}

执行结果:

count:4973
• 1

我们看到执行结果是4973,而正确的执行结果应该是5000,那么我们怎么才能让结果显示为5000呢,就看接下来我们使用synchronized实现一个线程安全的类

线程安全的类:

package com.lyy.concurrency.example.count;
import com.lyy.concurrency.annoatioons.NotThreadSafe;
import com.lyy.concurrency.annoatioons.ThreadSafe;
import lombok.extern.slf4j.Slf4j;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Semaphore;
@Slf4j
@ThreadSafe //线程安全的类
public class CountExample3 {
    //请求总数
    public static int clientTotal = 5000;
//同时并发执行的线程数
    public static int threadTotal = 200;
    //
    public static int count = 0;
    public static void main(String[] args) throws Exception{
        ExecutorService executorService = Executors.newCachedThreadPool();//线程池
        final Semaphore semaphore = new Semaphore(threadTotal);//允许并发的数量
        final CountDownLatch countDownLatch = new CountDownLatch(clientTotal);
        for (int i = 0; i < clientTotal; i++) {
                executorService.execute(() ->{
                    try {
                        semaphore.acquire();//判断线程是否允许被执行
                        add();//当acquire()返回出来值之后才会被执行
                        semaphore.release();
                    } catch (InterruptedException e) {
                            e.printStackTrace();
                    }
                    countDownLatch.countDown();
                });
        }
        countDownLatch.await();
        executorService.shutdown();
        System.out.println("count:"+count);
    }
    private synchronized static void add(){
        count++;
    }
}

屏幕快照 2022-05-10 下午12.47.22.png


返回结果:


count:5000


总结:

1、synchronized:是不可中断锁,适合竞争不激烈,可读性比较好

2、无论synchronized关键字加在方法上还是对象上,如果它作用的对象是非静态的,则它取得的锁是对象;

3、如果synchronized作用的对象是一个静态方法或一个类,则它取得的锁是对类,该类所有的对象同一把锁。

4、每个对象只有一个锁(lock)与之相关联,谁拿到这个锁谁就可以运行它所控制的那段代码。

5、实现同步是要很大的系统开销作为代价的,甚至可能造成死锁,所以尽量避免无谓的同步控制。


目录
相关文章
|
17天前
|
并行计算 安全 Java
Python GIL(全局解释器锁)机制对多线程性能影响的深度分析
在Python开发中,GIL(全局解释器锁)一直备受关注。本文基于CPython解释器,探讨GIL的技术本质及其对程序性能的影响。GIL确保同一时刻只有一个线程执行代码,以保护内存管理的安全性,但也限制了多线程并行计算的效率。文章分析了GIL的必要性、局限性,并介绍了多进程、异步编程等替代方案。尽管Python 3.13计划移除GIL,但该特性至少要到2028年才会默认禁用,因此理解GIL仍至关重要。
91 16
Python GIL(全局解释器锁)机制对多线程性能影响的深度分析
|
2月前
|
安全 Java Kotlin
Java多线程——synchronized、volatile 保障可见性
Java多线程中,`synchronized` 和 `volatile` 关键字用于保障可见性。`synchronized` 保证原子性、可见性和有序性,通过锁机制确保线程安全;`volatile` 仅保证可见性和有序性,不保证原子性。代码示例展示了如何使用 `synchronized` 和 `volatile` 解决主线程无法感知子线程修改共享变量的问题。总结:`volatile` 确保不同线程对共享变量操作的可见性,使一个线程修改后,其他线程能立即看到最新值。
|
2月前
|
安全 Java 编译器
深入理解Java中synchronized三种使用方式:助您写出线程安全的代码
`synchronized` 是 Java 中的关键字,用于实现线程同步,确保多个线程互斥访问共享资源。它通过内置的监视器锁机制,防止多个线程同时执行被 `synchronized` 修饰的方法或代码块。`synchronized` 可以修饰非静态方法、静态方法和代码块,分别锁定实例对象、类对象或指定的对象。其底层原理基于 JVM 的指令和对象的监视器,JDK 1.6 后引入了偏向锁、轻量级锁等优化措施,提高了性能。
75 3
|
3月前
|
供应链 安全 NoSQL
PHP 互斥锁:如何确保代码的线程安全?
在多线程和高并发环境中,确保代码段互斥执行至关重要。本文介绍了 PHP 互斥锁库 `wise-locksmith`,它提供多种锁机制(如文件锁、分布式锁等),有效解决线程安全问题,特别适用于电商平台库存管理等场景。通过 Composer 安装后,开发者可以利用该库确保在高并发下数据的一致性和安全性。
54 6
|
2月前
|
Java 关系型数据库 MySQL
【JavaEE“多线程进阶”】——各种“锁”大总结
乐/悲观锁,轻/重量级锁,自旋锁,挂起等待锁,普通互斥锁,读写锁,公不公平锁,可不可重入锁,synchronized加锁三阶段过程,锁消除,锁粗化
|
3月前
|
Java 开发者
在Java多线程编程的世界里,Lock接口正逐渐成为高手们的首选,取代了传统的synchronized关键字
在Java多线程编程的世界里,Lock接口正逐渐成为高手们的首选,取代了传统的synchronized关键字
64 4
|
4天前
|
Python
python3多线程中使用线程睡眠
本文详细介绍了Python3多线程编程中使用线程睡眠的基本方法和应用场景。通过 `time.sleep()`函数,可以使线程暂停执行一段指定的时间,从而控制线程的执行节奏。通过实际示例演示了如何在多线程中使用线程睡眠来实现计数器和下载器功能。希望本文能帮助您更好地理解和应用Python多线程编程,提高程序的并发能力和执行效率。
32 20
|
10天前
|
安全 Java C#
Unity多线程使用(线程池)
在C#中使用线程池需引用`System.Threading`。创建单个线程时,务必在Unity程序停止前关闭线程(如使用`Thread.Abort()`),否则可能导致崩溃。示例代码展示了如何创建和管理线程,确保在线程中执行任务并在主线程中处理结果。完整代码包括线程池队列、主线程检查及线程安全的操作队列管理,确保多线程操作的稳定性和安全性。
|
2月前
|
NoSQL Redis
单线程传奇Redis,为何引入多线程?
Redis 4.0 引入多线程支持,主要用于后台对象删除、处理阻塞命令和网络 I/O 等操作,以提高并发性和性能。尽管如此,Redis 仍保留单线程执行模型处理客户端请求,确保高效性和简单性。多线程仅用于优化后台任务,如异步删除过期对象和分担读写操作,从而提升整体性能。
79 1
|
4月前
|
存储 消息中间件 资源调度
C++ 多线程之初识多线程
这篇文章介绍了C++多线程的基本概念,包括进程和线程的定义、并发的实现方式,以及如何在C++中创建和管理线程,包括使用`std::thread`库、线程的join和detach方法,并通过示例代码展示了如何创建和使用多线程。
79 1

热门文章

最新文章