Java21虚拟线程:我的锁去哪儿了?

本文涉及的产品
视觉智能开放平台,分割抠图1万点
NLP自然语言处理_基础版,每接口每天50万次
NLP 自学习平台,3个模型定制额度 1个月
简介: 【10月更文挑战第8天】

0 前言

最近的文章中,我们详细介绍了当我们迁移到 Java 21 并将代际 ZGC 作为默认垃圾收集器时,我们的工作负载是如何受益的。虚拟线程是我们在这次迁移中兴奋采用的另一个特性。

对虚拟线程新手,它们被描述为“轻量级线程,大大减少编写、维护和观察高吞吐量并发应用程序的工作量。”威力来自在阻塞操作发生时,能够通过延续自动挂起和恢复,从而释放底层操作系统线程以供其他操作重用。在适当的上下文中利用虚拟线程可以解锁更高的性能。

本文讨论了在 Java 21 上部署虚拟线程的过程中遇到的一个特殊情况。

1 问题

工程师向性能工程和 JVM 生态系统团队提出了几份关于间歇性超时和挂起实例的独立报告。仔细检查后,我们注意到一组共同的特征和症状。在所有受影响的应用程序中,它们都在 Java 21 上运行,使用 SpringBoot 3 和嵌入式 Tomcat 在 REST 端点上提供流量。经历问题的实例甚至在这些实例上的 JVM 仍然运行时就停止了流量服务。一个清晰的、标志着这个问题开始的症状是 closeWait 状态的套接字数量持续增加:

  • Tomcat服务器的吞吐量在某个时间点突然下降到几乎为0,表明服务器可能停止处理新的请求
  • 同时,处于closeWait状态的套接字数量持续增加,这通常表示网络连接没有被正确关闭
  • 这两个指标的变化是相关的,可能表明存在严重的网络或应用程序问题,导致连接无法正常关闭,并最终影响了服务器的处理能力

2 收集的诊断

停留在 closeWait 状态的套接字表明远程对等方关闭了套接字,但本地实例从未关闭它,大概是因为应用程序未能这样做。这通常表明应用程序处于异常状态,这种情况下应用程序线程转储可能会揭示额外的洞察。

为解决这问题,我们首先利用警报系统捕获处于这种状态的实例。由于我们定期收集并持久化所有 JVM 工作负载的线程转储,我们通常可通过检查这些来自实例的线程转储来追溯行为。然而,惊讶发现我们所有的线程转储都显示一个完全空闲的 JVM,无任何明确的活动。

回顾最近变化,我们发现这些受影响的服务启用了虚拟线程,我们知道虚拟线程的调用栈不会出现在 jstack 生成的线程转储中。为了获得包含虚拟线程状态的更完整的线程转储,使用 “jcmd Thread.dump_to_file” 命令。作为最后的手段,我们还从实例中收集了一个堆转储。

3 分析

线程转储揭示了数千个“空白”虚拟线程:

#119821 "" virtual

#119820 "" virtual

#119823 "" virtual

#120847 "" virtual

#119822 "" virtual
...

这些是 VT(虚拟线程),其中创建了线程对象,但尚未开始运行,因此没有堆栈跟踪。事实上,空白 VT 的数量与 closeWait 状态的套接字数量大致相同。为了理解我们所看到的,我们首先需要了解 VT 的工作原理。

虚拟线程不是 1:1 映射到专用的 OS 级线程。相反,可将其视为计划到 fork-join 线程池中的任务。当虚拟线程进入阻塞调用时,如等待 Future,它会放弃它占据的 OS 线程,并简单地保留在内存中,直到它准备恢复。与此同时,OS 线程可以被重新分配以执行同一 fork-join 池中的其他 VT。这允许我们将许多 VT 多路复用到仅有的几个底层 OS 线程上。JVM 术语中,底层 OS 线程被称为“载体线程”,虚拟线程可“安装”在执行时和“卸载”在等待时。

虚拟线程的优秀深入描述可以在JEP 444。

在我们的环境下,对 Tomcat 使用了阻塞模型,实际上在请求的生命周期内保留了一个工作线程。通过启用虚拟线程,Tomcat 切换到虚拟执行。每个传入的请求都会创建一个新的虚拟线程,该线程简单地被计划在 Virtual Thread Executor 上作为一个任务。可见 Tomcat 在 这里 创建了 VirtualThreadExecutor

将这些信息联系回我们的问题,症状对应于 Tomcat 不断为每个传入的请求创建一个新的 web 工作 VT,但是没有可用的 OS 线程将它们安装上去的状态。

4 Tomcat 为啥卡住了?

OS 线程咋了,它们在忙啥?正如 这里 描述,如虚拟线程在 synchronized 块或方法内执行阻塞操作,它将被固定到底层 OS 线程。这正是这里发生的情况。这是从卡住的实例获得的线程转储中的一个相关片段:

#119515 "" virtual
      java.base/jdk.internal.misc.Unsafe.park(Native Method)
      java.base/java.lang.VirtualThread.parkOnCarrierThread(VirtualThread.java:661)
      java.base/java.lang.VirtualThread.park(VirtualThread.java:593)
      java.base/java.lang.System$2.parkVirtualThread(System.java:2643)
      java.base/jdk.internal.misc.VirtualThreads.park(VirtualThreads.java:54)
      java.base/java.util.concurrent.locks.LockSupport.park(LockSupport.java:219)
      java.base/java.util.concurrent.locks.AbstractQueuedSynchronizer.acquire(AbstractQueuedSynchronizer.java:754)
      java.base/java.util.concurrent.locks.AbstractQueuedSynchronizer.acquire(AbstractQueuedSynchronizer.java:990)
      java.base/java.util.concurrent.locks.ReentrantLock$Sync.lock(ReentrantLock.java:153)
      java.base/java.util.concurrent.locks.ReentrantLock.lock(ReentrantLock.java:322)
      zipkin2.reporter.internal.CountBoundedQueue.offer(CountBoundedQueue.java:54)
      zipkin2.reporter.internal.AsyncReporter$BoundedAsyncReporter.report(AsyncReporter.java:230)
      zipkin2.reporter.brave.AsyncZipkinSpanHandler.end(AsyncZipkinSpanHandler.java:214)
      brave.internal.handler.NoopAwareSpanHandler$CompositeSpanHandler.end(NoopAwareSpanHandler.java:98)
      brave.internal.handler.NoopAwareSpanHandler.end(NoopAwareSpanHandler.java:48)
      brave.internal.recorder.PendingSpans.finish(PendingSpans.java:116)
      brave.RealSpan.finish(RealSpan.java:134)
      brave.RealSpan.finish(RealSpan.java:129)
      io.micrometer.tracing.brave.bridge.BraveSpan.end(BraveSpan.java:117)
      io.micrometer.tracing.annotation.AbstractMethodInvocationProcessor.after(AbstractMethodInvocationProcessor.java:67)
      io.micrometer.tracing.annotation.ImperativeMethodInvocationProcessor.proceedUnderSynchronousSpan(ImperativeMethodInvocationProcessor.java:98)
      io.micrometer.tracing.annotation.ImperativeMethodInvocationProcessor.process(ImperativeMethodInvocationProcessor.java:73)
      io.micrometer.tracing.annotation.SpanAspect.newSpanMethod(SpanAspect.java:59)
      java.base/jdk.internal.reflect.DirectMethodHandleAccessor.invoke(DirectMethodHandleAccessor.java:103)
      java.base/java.lang.reflect.Method.invoke(Method.java:580)
      org.springframework.aop.aspectj.AbstractAspectJAdvice.invokeAdviceMethodWithGivenArgs(AbstractAspectJAdvice.java:637)
...

这堆栈跟踪中,进入了 brave.RealSpan.finish(RealSpan.java:134) 的同步。这个虚拟线程实际上被固定了 - 它被安装在一个实际的 OS 线程上,即使在等待获取可重入锁时也是如此。有 3 个 VT 在这种确切状态,另一个 VT 被识别为 “<redacted> @DefaultExecutor - 46542”,它也遵循相同的代码路径。这 4 个虚拟线程在等待获取锁时被固定。由于应用程序部署在具有 4 个 vCPU 的实例上,支撑 VT 执行的 fork-join 池 也包含 4 个 OS 线程。现在我们已经用尽了它们,没有其他虚拟线程可以取得任何进展。这解释了:

  • 为啥 Tomcat 停止处理请求
  • 为啥 closeWait 态的套接字数量不断攀升

事实上,Tomcat 在套接字上接受连接,创建请求以及与之相关的虚拟线程,并将此请求/线程传递给执行器进行处理。然而,新创建的 VT 无法被调度,因为 fork-join 池中的所有 OS 线程都被固定并且从未释放。因此,这些新创建的 VT 被困在队列中,同时仍然持有套接字。

5 谁拥有锁?

现在我们知道 VT 正在等待获取锁,下一个问题是谁拥有锁?回答这个问题是理解最初触发这个条件的关键。通常,线程转储通过 “- locked <0x…> (at …)” 或 “Locked ownable synchronizers” 指示谁拥有锁,但我们的线程转储中没有出现这些。事实上,jcmd 生成的线程转储中没有包含锁定/停车/等待信息。这是 Java 21 的一个限制,并将在未来版本中得到解决。仔细梳理线程转储,我们发现总共有 6 个线程竞争同一个 ReentrantLock 和相关的 Condition。这六个线程中的四个在前一节中详细说明。这是另一个线程:

#119516 "" virtual
      java.base/java.lang.VirtualThread.park(VirtualThread.java:582)
      java.base/java.lang.System$2.parkVirtualThread(System.java:2643)
      java.base/jdk.internal.misc.VirtualThreads.park(VirtualThreads.java:54)
      java.base/java.util.concurrent.locks.LockSupport.park(LockSupport.java:219)
      java.base/java.util.concurrent.locks.AbstractQueuedSynchronizer.acquire(AbstractQueuedSynchronizer.java:754)
      java.base/java.util.concurrent.locks.AbstractQueuedSynchronizer.acquire(AbstractQueuedSynchronizer.java:990)
      java.base/java.util.concurrent.locks.ReentrantLock$Sync.lock(ReentrantLock.java:153)
      java.base/java.util.concurrent.locks.ReentrantLock.lock(ReentrantLock.java:322)
      zipkin2.reporter.internal.CountBoundedQueue.offer(CountBoundedQueue.java:54)
      zipkin2.reporter.internal.AsyncReporter$BoundedAsyncReporter.report(AsyncReporter.java:230)
      zipkin2.reporter.brave.AsyncZipkinSpanHandler.end(AsyncZipkinSpanHandler.java:214)
      brave.internal.handler.NoopAwareSpanHandler$CompositeSpanHandler.end(NoopAwareSpanHandler.java:98)
      brave.internal.handler.NoopAwareSpanHandler.end(NoopAwareSpanHandler.java:48)
      brave.internal.recorder.PendingSpans.finish(PendingSpans.java:116)
      brave.RealScopedSpan.finish(RealScopedSpan.java:64)
      ...

请注意,虽然这个线程似乎经历了完成跨度的相同代码路径,但它没有经过 synchronized 块。最后是第 6 个线程:

#107 "AsyncReporter <redacted>"
      java.base/jdk.internal.misc.Unsafe.park(Native Method)
      java.base/java.util.concurrent.locks.LockSupport.park(LockSupport.java:221)
      java.base/java.util.concurrent.locks.AbstractQueuedSynchronizer.acquire(AbstractQueuedSynchronizer.java:754)
      java.base/java.util.concurrent.locks.AbstractQueuedSynchronizer$ConditionObject.awaitNanos(AbstractQueuedSynchronizer.java:1761)
      zipkin2.reporter.internal.CountBoundedQueue.drainTo(CountBoundedQueue.java:81)
      zipkin2.reporter.internal.AsyncReporter$BoundedAsyncReporter.flush(AsyncReporter.java:241)
      zipkin2.reporter.internal.AsyncReporter$Flusher.run(AsyncReporter.java:352)
      java.base/java.lang.Thread.run(Thread.java:1583)

这实际上是一个普通的平台线程,而不是虚拟线程。特别注意这个堆栈跟踪中的行号,这个线程似乎在内部 acquire() 方法 之后 阻塞了 完成等待。换句话说,这个调用线程在进入 awaitNanos() 时拥有锁。我们知道锁是在这里明确获取的 here。然而,当等待完成时,它无法重新获取锁。总结我们的线程转储分析:

Thread ID/name Virtual? “synchronized” block? Pinned? Waiting for the lock?
#119513 "" Yes Yes Yes Yes
#119514 "" Yes Yes Yes Yes
#119515 "" Yes Yes Yes Yes
#119517 "\ @DefaultExecutor - 46542" Yes Yes Yes Yes
#119516 "" Yes No No Yes
#107 "AsyncReporter " No No N/A Yes

在分析了锁的争夺情况后,我们发现有5个虚拟线程和1个常规线程正在等待锁。其中4个虚拟线程被固定在了fork-join池的OS线程上。尽管如此,我们仍然没有关于谁拥有该锁的信息。由于无法从线程转储中获取更多信息,我们合乎逻辑的下一步是查看堆转储并内省锁的状态。

6 检查锁

在堆转储中找到锁是相对直接的。使用出色的Eclipse MAT工具,我们检查了AsyncReporter非虚拟线程的堆栈上的对象,以识别锁对象。推理锁的当前状态可能是我们调查中最棘手的部分。大多数相关代码都可以在AbstractQueuedSynchronizer.java中找到。虽然我们不声称完全理解其内部工作原理,但我们逆向工程了足够的信息以匹配我们在堆转储中看到的内容。下面的图表说明了我们的发现:

首先,exclusiveOwnerThread字段为null(2),表示没有人拥有该锁。我们在列表的头部有一个“空”的ExclusiveNode(3)(waiternullstatus已清除),后面是另一个ExclusiveNode,其waiter指向争夺锁的虚拟线程之一——#119516(4)。我们发现唯一清除exclusiveOwnerThread字段的地方是在ReentrantLock.Sync.tryRelease()方法中(源代码链接)。在那里,我们还设置了state = 0,与我们在堆转储中看到的状态相匹配(1)。

考虑到这一点,我们追溯了释放锁的代码路径。在成功调用tryRelease()之后,持有锁的线程尝试向列表中的下一个等待者发出信号。此时,即使锁的所有权实际上已经释放,持有锁的线程仍然在列表的头部。列表中的下一个节点指向即将获取锁的线程。

为了理解这种信号是如何工作的,让我们看看AbstractQueuedSynchronizer.acquire()方法中的锁定获取路径。极度简化地说,它是一个无限循环,线程尝试获取锁,如果尝试不成功,则停车:

while(true) {
   
   if (tryAcquire()) {
   
      return; // 锁已获取
   }
   park();
}

当持有锁的线程释放锁并发出信号以取消阻塞下一个等待线程时,被取消阻塞的线程将再次遍历这个循环,给它又一次获取锁的机会。事实上,我们的线程转储表明我们所有的等待线程都停在了第754行。一旦被取消阻塞,成功获取锁的线程最终将进入这段代码块中,有效地重置列表的头部并清除对等待者的引用。

更简洁地重新陈述,拥有锁的线程被列表的头部节点引用。释放锁会通知列表中的下一个节点,而获取锁会将列表的头部重置为当前节点。这意味着我们在堆转储中看到的内容反映了一个线程已经释放了锁但下一个线程尚未获取它的状态。这是一个本应是瞬态的奇怪中间状态,但我们的JVM却卡在了这里。我们知道线程#119516已经被通知并且即将获取锁,因为我们在列表头部识别出的ExclusiveNode状态。然而,线程转储显示线程#119516继续等待,就像其他争夺相同锁的线程一样。我们如何调和线程和堆转储之间所看到的情况?

7 无处运行的锁

知道线程#119516实际上已经被通知,我们回到线程转储中重新检查线程的状态。回想一下,我们总共有6个线程在等待锁,其中4个虚拟线程每个都被固定在OS线程上。这4个线程在获取锁并退出同步块之前不会放弃它们的OS线程。#107 "AsyncReporter <redacted>"是一个常规平台线程,所以如果它获取了锁,没有什么可以阻止它继续进行。这让我们剩下最后一个线程:#119516。它是一个VT,但它没有被固定在OS线程上。即使它被通知取消停车,它也无法继续,因为fork-join池中没有更多的OS线程可以调度它。正是这里发生的情况——尽管#119516被信号取消停车,它不能离开停车状态,因为fork-join池被其他4个等待获取相同锁的VT占据。那些被固定的VT在获取锁之前都不能继续。这是经典死锁问题的变体,但我们有一个锁和一个由fork-join池所代表的4个许可的信号量。

现在我们知道确切发生了什么,很容易想出一个可重现的测试用例。

8 结论

虚拟线程预计将通过减少与线程创建和上下文切换相关的开销来提高性能。尽管Java 21还有一些尖锐的边缘,虚拟线程在很大程度上实现了它们的承诺。在我们寻求更高性能的Java应用程序的过程中,我们看到进一步采用虚拟线程是实现该目标的关键。我们期待Java 23及以后,它带来了大量的升级,希望解决虚拟线程和锁定原语之间的集成问题。

这次探索仅突出了性能工程师解决的问题类型之一。我们希望这种对我们解决问题方法的一瞥对其他人在未来的调查中具有价值。

参考:

目录
相关文章
|
5天前
|
Java
Java—多线程实现生产消费者
本文介绍了多线程实现生产消费者模式的三个版本。Version1包含四个类:`Producer`(生产者)、`Consumer`(消费者)、`Resource`(公共资源)和`TestMain`(测试类)。通过`synchronized`和`wait/notify`机制控制线程同步,但存在多个生产者或消费者时可能出现多次生产和消费的问题。 Version2将`if`改为`while`,解决了多次生产和消费的问题,但仍可能因`notify()`随机唤醒线程而导致死锁。因此,引入了`notifyAll()`来唤醒所有等待线程,但这会带来性能问题。
Java—多线程实现生产消费者
|
7天前
|
安全 Java Kotlin
Java多线程——synchronized、volatile 保障可见性
Java多线程中,`synchronized` 和 `volatile` 关键字用于保障可见性。`synchronized` 保证原子性、可见性和有序性,通过锁机制确保线程安全;`volatile` 仅保证可见性和有序性,不保证原子性。代码示例展示了如何使用 `synchronized` 和 `volatile` 解决主线程无法感知子线程修改共享变量的问题。总结:`volatile` 确保不同线程对共享变量操作的可见性,使一个线程修改后,其他线程能立即看到最新值。
|
7天前
|
消息中间件 缓存 安全
Java多线程是什么
Java多线程简介:本文介绍了Java中常见的线程池类型,包括`newCachedThreadPool`(适用于短期异步任务)、`newFixedThreadPool`(适用于固定数量的长期任务)、`newScheduledThreadPool`(支持定时和周期性任务)以及`newSingleThreadExecutor`(保证任务顺序执行)。同时,文章还讲解了Java中的锁机制,如`synchronized`关键字、CAS操作及其实现方式,并详细描述了可重入锁`ReentrantLock`和读写锁`ReadWriteLock`的工作原理与应用场景。
|
7天前
|
安全 Java 编译器
深入理解Java中synchronized三种使用方式:助您写出线程安全的代码
`synchronized` 是 Java 中的关键字,用于实现线程同步,确保多个线程互斥访问共享资源。它通过内置的监视器锁机制,防止多个线程同时执行被 `synchronized` 修饰的方法或代码块。`synchronized` 可以修饰非静态方法、静态方法和代码块,分别锁定实例对象、类对象或指定的对象。其底层原理基于 JVM 的指令和对象的监视器,JDK 1.6 后引入了偏向锁、轻量级锁等优化措施,提高了性能。
24 3
|
7天前
|
存储 安全 Java
Java多线程编程秘籍:各种方案一网打尽,不要错过!
Java 中实现多线程的方式主要有四种:继承 Thread 类、实现 Runnable 接口、实现 Callable 接口和使用线程池。每种方式各有优缺点,适用于不同的场景。继承 Thread 类最简单,实现 Runnable 接口更灵活,Callable 接口支持返回结果,线程池则便于管理和复用线程。实际应用中可根据需求选择合适的方式。此外,还介绍了多线程相关的常见面试问题及答案,涵盖线程概念、线程安全、线程池等知识点。
78 2
|
15天前
|
安全 Java API
java如何请求接口然后终止某个线程
通过本文的介绍,您应该能够理解如何在Java中请求接口并根据返回结果终止某个线程。合理使用标志位或 `interrupt`方法可以确保线程的安全终止,而处理好网络请求中的各种异常情况,可以提高程序的稳定性和可靠性。
46 6
|
24天前
|
安全 算法 Java
Java多线程编程中的陷阱与最佳实践####
本文探讨了Java多线程编程中常见的陷阱,并介绍了如何通过最佳实践来避免这些问题。我们将从基础概念入手,逐步深入到具体的代码示例,帮助开发者更好地理解和应用多线程技术。无论是初学者还是有经验的开发者,都能从中获得有价值的见解和建议。 ####
|
24天前
|
Java 调度
Java中的多线程编程与并发控制
本文深入探讨了Java编程语言中多线程编程的基础知识和并发控制机制。文章首先介绍了多线程的基本概念,包括线程的定义、生命周期以及在Java中创建和管理线程的方法。接着,详细讲解了Java提供的同步机制,如synchronized关键字、wait()和notify()方法等,以及如何通过这些机制实现线程间的协调与通信。最后,本文还讨论了一些常见的并发问题,例如死锁、竞态条件等,并提供了相应的解决策略。
48 3
|
25天前
|
监控 Java 开发者
深入理解Java中的线程池实现原理及其性能优化####
本文旨在揭示Java中线程池的核心工作机制,通过剖析其背后的设计思想与实现细节,为读者提供一份详尽的线程池性能优化指南。不同于传统的技术教程,本文将采用一种互动式探索的方式,带领大家从理论到实践,逐步揭开线程池高效管理线程资源的奥秘。无论你是Java并发编程的初学者,还是寻求性能调优技巧的资深开发者,都能在本文中找到有价值的内容。 ####
|
5天前
|
Java 关系型数据库 MySQL
【JavaEE“多线程进阶”】——各种“锁”大总结
乐/悲观锁,轻/重量级锁,自旋锁,挂起等待锁,普通互斥锁,读写锁,公不公平锁,可不可重入锁,synchronized加锁三阶段过程,锁消除,锁粗化