【数据结构】树

简介: 【数据结构】树

正文


树是 n(n >= 0) 个结点的有限集合,当 n = 0 时称为空树。在任一非空树 (n > 0) 中,有且仅有一个称为根的结点;其余结点可分为 m(m >= 0) 个互不相交的有限子集 T1, T2, ..., Tm,其中,每个 T1 又都是一棵树,并且称为根结点的子树。

树的定义是递归的,它表明了树本身的固有特性,也就是一棵树由若干棵子树构成,而子树又由更小的子树构成。


从数据结构的逻辑关系角度来看,树中元素之间有严格的层次关系。对于树中的某个结点,它最多只和上一层的一个结点(即其双亲结点)有直接的关系,而与其下一层的多个结点(其孩子结点)有直接关系,如下图所示。通常,凡是分等级的分类方案都可以用具有严格层次关系的树结构来描述。


16.webp.jpg


1. 树的重要概念


  • 结点的度。一个结点的子树的个数记为该结点的度。 如上图所示,A、B 的度为 2,C 的度为 0,D 的度为 1。
  • 叶子节点。叶子结点也成为了终端结点,指度为 0 的结点。
  • 树的高度。一棵树的最大层数记为树的高度(或深度)。


2. 二叉树的存储结构


  • 二叉树的顺序存储结构。用一组地址连续的存储单元存储二叉树中的结点,必须把结点排成一个适当的线性序列。并且结点在这个序列中的相互位置能反映出结点之间的逻辑关系。对于深度为 k 的完全二叉树,除第 k 层外,其余各层中含有最大的结点数,即每一层的结点数恰为其上一层结点数的两倍,由此从一个结点的编号可推知其双亲、左孩子和右孩子的编号。

17.webp.jpg


  • 二叉树的链式存储结构。由于二叉树的结点中包含有数据元素、左子树的根、右子树的根及双亲等信息,因此可以用三叉链表或二叉链表(即一个结点含有 3 个指针或两个指针)来存储二叉树,链表的头指针指向二叉树的根结点。


18.webp.jpg

目录
相关文章
|
5天前
|
存储 缓存 算法
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式,强调了合理选择数据结构的重要性,并通过案例分析展示了其在实际项目中的应用,旨在帮助读者提升编程能力。
26 5
|
2月前
|
存储 算法 搜索推荐
探索常见数据结构:数组、链表、栈、队列、树和图
探索常见数据结构:数组、链表、栈、队列、树和图
108 64
|
26天前
|
存储 搜索推荐 算法
【数据结构】树型结构详解 + 堆的实现(c语言)(附源码)
本文介绍了树和二叉树的基本概念及结构,重点讲解了堆这一重要的数据结构。堆是一种特殊的完全二叉树,常用于实现优先队列和高效的排序算法(如堆排序)。文章详细描述了堆的性质、存储方式及其实现方法,包括插入、删除和取堆顶数据等操作的具体实现。通过这些内容,读者可以全面了解堆的原理和应用。
63 16
|
2月前
|
存储 算法 关系型数据库
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
这篇文章主要介绍了多路查找树的基本概念,包括二叉树的局限性、多叉树的优化、B树及其变体(如2-3树、B+树、B*树)的特点和应用,旨在帮助读者理解这些数据结构在文件系统和数据库系统中的重要性和效率。
24 0
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
|
2月前
|
存储 编译器 C++
【初阶数据结构】掌握二叉树遍历技巧与信息求解:深入解析四种遍历方法及树的结构与统计分析
【初阶数据结构】掌握二叉树遍历技巧与信息求解:深入解析四种遍历方法及树的结构与统计分析
|
2月前
【高阶数据结构】二叉树进阶探秘:AVL树的平衡机制与实现详解(三)
【高阶数据结构】二叉树进阶探秘:AVL树的平衡机制与实现详解
|
2月前
【高阶数据结构】二叉树进阶探秘:AVL树的平衡机制与实现详解(二)
【高阶数据结构】二叉树进阶探秘:AVL树的平衡机制与实现详解
|
2月前
|
存储
【高阶数据结构】二叉树进阶探秘:AVL树的平衡机制与实现详解(一)
【高阶数据结构】二叉树进阶探秘:AVL树的平衡机制与实现详解
|
3月前
|
JSON 前端开发 JavaScript
一文了解树在前端中的应用,掌握数据结构中树的生命线
该文章详细介绍了树这一数据结构在前端开发中的应用,包括树的基本概念、遍历方法(如深度优先遍历、广度优先遍历)以及二叉树的先序、中序、后序遍历,并通过实例代码展示了如何在JavaScript中实现这些遍历算法。此外,文章还探讨了树结构在处理JSON数据时的应用场景。
一文了解树在前端中的应用,掌握数据结构中树的生命线
|
2月前
|
Java C++
【数据结构】探索红黑树的奥秘:自平衡原理图解及与二叉查找树的比较
本文深入解析红黑树的自平衡原理,介绍其五大原则,并通过图解和代码示例展示其内部机制。同时,对比红黑树与二叉查找树的性能差异,帮助读者更好地理解这两种数据结构的特点和应用场景。
33 0