【高阶数据结构】二叉树进阶探秘:AVL树的平衡机制与实现详解(一)

简介: 【高阶数据结构】二叉树进阶探秘:AVL树的平衡机制与实现详解

前文

关于上篇二叉搜索树性能那块,探讨了二叉搜索树虽然可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查找元素相当于在顺序表中搜索元素,效率低下。

因此,两位俄罗斯的数学家G.M.Adelson-VelskiiE.M.Landis在1962年发明了一种解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度,按照这种规则形成的二叉搜索树为AVL树,保持着严格的平衡。

一、AVL树概念

一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树:

  • 它的左右子树都是AVL树
  • 左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)
  • 平衡因子并不是必须,只是他的一种实现方式

如果一棵二叉搜索树是高度平衡的,它就是AVL树。如果它有n个结点,其高度可保持在logn,搜索时间复杂度O(logn)

平衡因子计算:

  • 平衡因子 = 右子树高度 - 左子树高度

二、AVL树实现

2.1 AVL树节点的定义 (成员默认访问公有)

template<class K, class V>
    struct AVLTreeNode
    {
        AVLTreeNode<K, V>* _left;
        AVLTreeNode<K, V>* _right;
        AVLTreeNode<K, V>* _parent;
        pair<K, V> _kv;
        int _bf;
        //主要类型
        AVLTreeNode(const pair<K, V> & kv)
            :_left(nullptr)
                ,_right(nullptr)
                ,_parent(nullptr)
                ,_kv(kv)
                ,_bf(0)
            {}
    };

AVL树每个结构存储一个pair对象,其中需要parent指针目的是为了方便访问当前节点的上一个节点。

考虑到AVLTreeNode书写麻烦,使用typedef进行类型重定义typedef AVLTreeNode Node;

2.2 AVL树查找逻辑

Node* Find(const K& key)
  {
    //按照搜索树
    Node* cur = _root;
    while (cur)
    {
      if (key > cur->_kv.first)
      {
        cur = cur->_right;
      }
      else if (key < cur->_kv.first)
      {
        cur = cur->_left;
      }
      else
      {
        //返回当前节点的指针
        return cur;
      }
    }
        //防止意外发生。
    return nullptr;
  }

本质上来说AVL树属于二叉搜索树,关于cur->_kv.first是cur通过指针去访问Node类中类型为pair对象的_kv。通过set与map简单学习。可以得知pair内部实现逻辑,_这里的kv.first中first是K类型的对象。同时AVL也是二叉树搜索树,查找逻辑当然是使用二叉搜索树的逻辑。

2.3 AVL树插入逻辑

既然AVL也是二叉搜索树,那么插入逻辑也是一样的,不同在于需要进行平衡因子的调正。(平衡因子 = 右子树高度 - 左子树高度)

当插入节点结束后,对插入节点的父亲节点进行平衡因子的修改。当对于父亲节点达到特定值会对应不同的情况,不断利用parent向上调整父亲节点的平衡因子。

通过例图去分析,当父亲平衡因子到达特定值对应不同情况:

第一张:当parent平衡因子从1或-1变到0

第二张:这里出现两种情况,parent平衡因子从0变到1或-1,parent平衡因子从1或-1变到2或-2。只有从0变到1或-1,没有从2或-2变成1或-1,因为当parent平衡因子绝对值超过1时,已经出现问题,需要进行调正

具体说明:

  1. 按照搜索树规则插入
  2. 某个父亲节点的平衡因子    
  • 插入父亲的左孩子,父亲平衡因子–
  • 插入父亲的右孩子,父亲平衡因子++
while (parent)
{
    //规矩平衡因子的规则,是根据特性和下面代码得来的
    if (parent->_left == cur)
    {
        parent->_bf--;
    }
    else if (parent->_right == cur)
    {
        parent->_bf++;
    }
    //判断是否回到父亲节点改动
    if (parent->_bf == 0)
    {
        //没有啥问题,可以跳出程序
        break;
    }
    else if (parent->_bf == 1 || parent->_bf == -1)
    {
        cur = parent;
        parent = parent->_parent;
    }
    //出现问题,这种情况是由情况二变化过来的,那么就是说,cur和parent向上移动了
    else if (parent->_bf == 2 || parent->_bf == -2
             {//.............}
}

理解:

在节点插入后,需要进行平衡因子的更新。更新顺序是从下到上,结合着父亲节点平衡因子进行判断是否需要继续向上更新。

根据判断更新父亲的平衡因子状况进行处理(该平衡因子更新完后):

  • 父亲平衡因子 == 0,父亲所在子树高度不变,不再继续往上更新,插入结束
  • 父亲平衡因子 == 1 or -1, 父亲所在子树高度变了,继续往上更新上面节点的平衡因子
  • 父亲平衡因子 == 2 or -2, 父亲所在的子树已经不平衡了,需要旋转处理

三、AVL的旋转(重点)

如果在一颗原本是平衡的AVL树中插入一个新节点,可能造成不平衡,此时必须调整树的结构使之平衡化。根据节点插入位置的不同,AVL树的旋转分为四种:

这里可以将前面两种归为单旋进行处理,而后面两种需要通过双旋进行处理。

提前说明:一个AVL树有多个AVL树或者说一个复杂的AVL树是由许多个简单的AVL树进行组合而成的。那么如果插入一个节点导致AVL树失去平衡,这里AVL树指以插入节点的父亲节点为根节点的子AVL树。遵守一个有问题解决问题,如果只是这一课AVL树有问题,就解决这颗AVL树,正常的AVL树我们是不要去过多的进行处理。

根据说明,如果将一整棵AVL树全部拆分进行研究,不同节点插入的位置很多选择,情况有很多种,难以全部罗列出来,而且没有必要,如果将一颗有问题AVL树治好,就可以将任何一颗AVL树治好,所以这边采用使用抽象图进行分析。

3.1 选用抽象图探讨AVL旋转

其中使用a、b、c子AVL树及其高度设置为h

抽象图中的抽象的AVL树平衡因子这里不用看的,目前罗列的情况是可以包含这里的,这里小部分就是大部分调正平衡因子的过程,意味着这部分也可以是抽象AVL树中的情况按照当前处理已经进行了调整。

3.2 单旋问题

使用单旋场景:parent->_bf == 2 && cur->_bf == 1或者parent->_bf == -2 && cur->_bf == -1

3.2.1 新节点插入较高左子树的左侧–左左:右单旋

场景:parent->_ bf == -2 && cur->_bf == -1

具体解析旋转步骤:

目前AVL树是平衡的,当插入新节点30到左子树中,左子树高度加一层,导致以60为根的子AVL树失去平衡。为了使得平衡,意味着节点60的右子树也需要增加一层,那么将60节点成为30节点的左孩子,同时原本30节点的左孩子和60节点成为30节点的左孩子的高度相同,那么将原本30节点的左孩子成为60节点有孩子。这里保证了30节点原本左孩子一定是小于60节点的。更新节点的平衡因子即可,简单概况就是30 < b子树 < 60 < c子树

旋转过程中,有以下几点情况需要考虑:

  1. 30节点的右孩子可能存在,也可能不存在
  2. 60可能是根节点,也可能是子树    
  • 如果是根节点,旋转完成后,要更新根节点
  • 如果是子树,可能是某个节点的左子树,也可能是右子树
void RotateR(Node* parent)
{
    Node* SubL = parent->_left;
    Node* SubLR = SubL->_right;
    parent->_left = SubLR;
    if (SubLR)
        SubLR->_parent = parent;
    SubL->_right = parent;
    Node* ppNode = parent->_parent;
    parent->_parent = subL;
    if (parent == _root)
    {
        SubL = _root;
        SubL->_parent = nullptr;
    }
    else
    {
        if (ppNode->_left == parent)
        {
            ppNode->_left = SubL;
        }
        else if(ppNode->_right == parent)
        {
            ppNode->_right = SubL;
        }
        SubL->_parant = ppNode;
    }
    SubL->_bf = 0;
    parent->_bf = 0;
}

通过旋转使得不平衡AVL树得到调整,这里不需要考虑向上更新平衡因子。从抽象图中可以得出旋转后结论,直接使用结论修改平衡因子就行。

3.2.2 新节点插入较高右子树的右侧–右右:左单旋

场景:parent->_ bf == 2 && cur->_bf == 1

这里和右单旋是差不多的,具体流程可以去看上述和代码分析

void RotateL(Node* parent)
{
    Node* SubR = parent->_right;
    Node* SubRL = SubR->_left;
    parent->_right = SubRL;
    if (SubRL)
        SubR->_parent = parent;
    SubR->_left = parent;
    Node* ppNode = parent->_parent;
    parent->_parent = subR;
    if (parent == _root)
    {
        SubR = _root;
        SubR->_parent = nullptr;
    }
    else
    {
        if (ppNode->_left == parent)
        {
            ppNode->_left = SubR;
        }
        else if (ppNode->_right == parent)
        {
            ppNode->_right = SubR;
        }
        SubR->_parant = ppNode;
    }
    SubR->_bf = 0;
    parent->_bf = 0;
}


【高阶数据结构】二叉树进阶探秘:AVL树的平衡机制与实现详解(二)https://developer.aliyun.com/article/1617412

相关文章
|
7月前
|
存储 算法 Java
算法系列之数据结构-二叉树
树是一种重要的非线性数据结构,广泛应用于各种算法和应用中。本文介绍了树的基本概念、常见类型(如二叉树、满二叉树、完全二叉树、平衡二叉树、B树等)及其在Java中的实现。通过递归方法实现了二叉树的前序、中序、后序和层次遍历,并展示了具体的代码示例和运行结果。掌握树结构有助于提高编程能力,优化算法设计。
200 10
 算法系列之数据结构-二叉树
|
6月前
|
存储 Java 编译器
Java 中 .length 的使用方法:深入理解 Java 数据结构中的长度获取机制
本文深入解析了 Java 中 `.length` 的使用方法及其在不同数据结构中的应用。对于数组,通过 `.length` 属性获取元素数量;字符串则使用 `.length()` 方法计算字符数;集合类如 `ArrayList` 采用 `.size()` 方法统计元素个数。此外,基本数据类型和包装类不支持长度属性。掌握这些区别,有助于开发者避免常见错误,提升代码质量。
490 1
|
7月前
|
算法 Java
算法系列之数据结构-Huffman树
Huffman树(哈夫曼树)又称最优二叉树,是一种带权路径长度最短的二叉树,常用于信息传输、数据压缩等方面。它的构造基于字符出现的频率,通过将频率较低的字符组合在一起,最终形成一棵树。在Huffman树中,每个叶节点代表一个字符,而每个字符的编码则是从根节点到叶节点的路径所对应的二进制序列。
160 3
 算法系列之数据结构-Huffman树
|
7月前
|
存储 自然语言处理 数据库
【数据结构进阶】AVL树深度剖析 + 实现(附源码)
在深入探讨了AVL树的原理和实现后,我们不难发现,这种数据结构不仅优雅地解决了传统二叉搜索树可能面临的性能退化问题,还通过其独特的平衡机制,确保了在任何情况下都能提供稳定且高效的查找、插入和删除操作。
520 19
|
9月前
|
存储 C++
【C++数据结构——树】哈夫曼树(头歌实践教学平台习题) 【合集】
【数据结构——树】哈夫曼树(头歌实践教学平台习题)【合集】目录 任务描述 相关知识 测试说明 我的通关代码: 测试结果:任务描述 本关任务:编写一个程序构建哈夫曼树和生成哈夫曼编码。 相关知识 为了完成本关任务,你需要掌握: 1.如何构建哈夫曼树, 2.如何生成哈夫曼编码。 测试说明 平台会对你编写的代码进行测试: 测试输入: 1192677541518462450242195190181174157138124123 (用户分别输入所列单词的频度) 预
198 14
【C++数据结构——树】哈夫曼树(头歌实践教学平台习题) 【合集】
|
9月前
|
Java C++
【C++数据结构——树】二叉树的基本运算(头歌实践教学平台习题)【合集】
本关任务:编写一个程序实现二叉树的基本运算。​ 相关知识 创建二叉树 销毁二叉树 查找结点 求二叉树的高度 输出二叉树 //二叉树节点结构体定义 structTreeNode{ intval; TreeNode*left; TreeNode*right; TreeNode(intx):val(x),left(NULL),right(NULL){} }; 创建二叉树 //创建二叉树函数(简单示例,手动构建) TreeNode*create
190 12
|
9月前
|
C++
【C++数据结构——树】二叉树的性质(头歌实践教学平台习题)【合集】
本文档介绍了如何根据二叉树的括号表示串创建二叉树,并计算其结点个数、叶子结点个数、某结点的层次和二叉树的宽度。主要内容包括: 1. **定义二叉树节点结构体**:定义了包含节点值、左子节点指针和右子节点指针的结构体。 2. **实现构建二叉树的函数**:通过解析括号表示串,递归地构建二叉树的各个节点及其子树。 3. **使用示例**:展示了如何调用 `buildTree` 函数构建二叉树并进行简单验证。 4. **计算二叉树属性**: - 计算二叉树节点个数。 - 计算二叉树叶子节点个数。 - 计算某节点的层次。 - 计算二叉树的宽度。 最后,提供了测试说明及通关代
168 10
|
9月前
|
存储 算法 测试技术
【C++数据结构——树】二叉树的遍历算法(头歌教学实验平台习题) 【合集】
本任务旨在实现二叉树的遍历,包括先序、中序、后序和层次遍历。首先介绍了二叉树的基本概念与结构定义,并通过C++代码示例展示了如何定义二叉树节点及构建二叉树。接着详细讲解了四种遍历方法的递归实现逻辑,以及层次遍历中队列的应用。最后提供了测试用例和预期输出,确保代码正确性。通过这些内容,帮助读者理解并掌握二叉树遍历的核心思想与实现技巧。
266 3
|
11月前
|
存储 算法
非递归实现后序遍历时,如何避免栈溢出?
后序遍历的递归实现和非递归实现各有优缺点,在实际应用中需要根据具体的问题需求、二叉树的特点以及性能和空间的限制等因素来选择合适的实现方式。
229 59
|
4月前
|
编译器 C语言 C++
栈区的非法访问导致的死循环(x64)
这段内容主要分析了一段C语言代码在VS2022中形成死循环的原因,涉及栈区内存布局和数组越界问题。代码中`arr[15]`越界访问,修改了变量`i`的值,导致`for`循环条件始终为真,形成死循环。原因是VS2022栈区从低地址到高地址分配内存,`arr`数组与`i`相邻,`arr[15]`恰好覆盖`i`的地址。而在VS2019中,栈区先分配高地址再分配低地址,因此相同代码表现不同。这说明编译器对栈区内存分配顺序的实现差异会导致程序行为不一致,需避免数组越界以确保代码健壮性。
64 0
栈区的非法访问导致的死循环(x64)