《嵌入式Linux与物联网软件开发——C语言内核深度解析》一2.2 常用位操作符

简介:

本节书摘来自异步社区《嵌入式Linux与物联网软件开发——C语言内核深度解析》一书中的第2章,第2.2节,作者朱有鹏 , 张先凤,更多章节内容可以访问云栖社区“异步社区”公众号查看。

2.2 常用位操作符


3b3c1ef8268aaad7c5364bf1d68b35a0b27224ac

2.2.1 位与(&)

位与就是对数的二进制位进行运算。两个数每个二进制位的运算规则按照如下规则运算。该规则就是其真值表。

& 0 1
0 0 0
1 0 1
从其运算规则(真值表)可以看出,只有1和1进行与运算的结果是1,其余的全是0。如果我们将1当做真,0当做假的话,按照与运算的要求,两个为真才为真,只要有一个为假就为假。好了,我们看下面一个例子。

3 & 5 = ?

分析可知这两个是十进制数,所以先把这两个数都转化为二进制数。

3转化二进制:0b0011

5转化二进制:0b0101

将这两个数的二进制形式按照上面的运算规则进行按位与运算。

0b0011 (3)
&    0b0101 (5)
=    0b0001 (1)

将得到的二进制结果0b0001变为十进制,十进制结果为1。

所以可以得出结论:`javascript
3 & 5 = 1。


扩展:&(按位与)和&&(逻辑与)的区别

&&(逻辑与)是将要运算的两个数看做一个整体,而这个整体如果是0,则该数被定义成逻辑假(0);如果该数不为0(不管是正的还是负的),则被定义成逻辑真(1)。来看几个小例子。

3 && 5 = ?

分析:3(逻辑真),5(逻辑真),真 && 真 = 真,所以结果为真,即```javascript
3 &`
& 5 = 1。

3 && 0 = ?

分析:3(逻辑真),0(逻辑假),真 && 假 = 假,所以结果为假,即`javascript
3 && 0 = 0。

3 && -5 = ?


分析:3(逻辑真), -5(逻辑真),真 && 真 = 真,所以结果为真,即```javascript
3
&& -5 = 1。

2.2.2 位或(|)

对两个数的二进制位进行或运算,其真值表如下。

| 0 1
0 0 1
1 1 1
从其真值表可以看出,只有0和0进行或运算的结果是0,其余的全是1。对于位或运算来说,运算的两个位,只要有一个为1结果就为1,否则都为0。如下面这个例子。

3 | 5 = ?

将十进制转化为二进制。

3转化为二进制:0b0011

5转化为二进制:0b0101

对这两个数的二进制形式按照上面的运算规则进行按位或运算。

0b0011 (3) 
|    0b0101 (5)
=    0b0111 (7)

将二进制结果0b0111转化为十进制,十进制结果为7。

所以可以得出结论:3 | 5 = 7。

扩展:|(按位或) 和 ||(逻辑或)的区别

||(逻辑或)是将要运算的两个数都看成一个整体,而这个整体如果是0,则该数被定义成逻辑假(0);如果该数不为0(不管是正的还是负的),则被定义成逻辑真(1)。来看下面这个小例子。

3 || 5 = ?

分析:3(逻辑真),5(逻辑真),真 || 真 = 真,所以结果为真,即3 || 5 = 1。

0 || 0 = ?

分析:0(逻辑假),0(逻辑假),假 || 假 = 假,所以结果为假,即0 || 0 = 0。

3 || -5 = ?

分析:3(逻辑真) -5(逻辑真),真 || 真 = 真,所以结果为真,即3 || -5 = 1。

2.2.3 位取反(~)

位取反就是将操作数的二进制位逐个按位取反(1变成0,0变成1),其真值表如下。

~0 = 1
~1 = 0

从上真值表中不难发现规律,取反后,1变0,0变1,比如下面这个例子。

~10 = ?

将十进制转化为二进制。

10转化为二进制:0b1010

对操作数的二进制形式按位取反。此处为了方便说明,暂时不考虑更高位补齐。实际编程位取反时要考虑取反的数的数据类型,然后在高位补足0,这时0会在取反时变为1。

~    0b1010 (10)
     0b0101 (5)

将二进制结果0b0101转化为十进制,结果为5。

所以可以得出结论:~10 = 5

扩展:~(按位取反) 和 !(非)的区别

!(非)是将操作数看成一个整体,而这个整体如果是0,则该数被定义成逻辑假(0);如果该数不为0(不管是正的还是负的),则被定义成逻辑真(1)。来看几个小例子。

!10 = ?

分析:10(逻辑真) 非真就是假,所以结果为假,即!10 = 0。

!0 = ?

分析:0(逻辑假) 非假就是真,所以结果为真,即!0 = 1。

!(-10) = ?

分析:-10(逻辑真) 非真就是假,所以结果为假,即!(-10) = 0。

2.2.4 位异或(^)

位异或就是将两个数的二进制位进行位异或运算。位运算的真值表如下。

^    0    1
0    0    1
1    1    0

从其运算规则(真值表)可以看出,两个位如果相等,结果为0,不等则结果为1。比如下面的例子。

3 ^ 5 = ?

将十进制转化为二进制。

3转化为二进制:0b0011

5转化为二进制:0b0101

将这两个数的二进制形式按照上面的运算规则进行按位与运算。

0b0011 (3)
^    0b0101 (5)
=    0b0110 (6)

将二进制结果0b0110转为十进制,十进制结果为6。

0b0110转化为十进制:6

所以可以得出结论:3 ^ 5 = 6。

2.2.5 左移位(<<)

左移位就是将一个操作数的各二进制位全部左移若干位,左边移出去的二进制位丢弃,右边空出的二进制位补0。话不多说,来看个例子。

5 << 2 = ?

将十进制化为二进制。

5转化为二进制:0b00000101

对操作数0b00000101开始进行左移位两次。

0b00000101 (5)

第一次左移位 0b00001010 (10) = 5 * 2

第二次左移位 0b00010100 (20) = 10 * 2

将二进制结果0b00010100转为十进制,十进制结果为20。

所以可以得出结论:5 << 2 = 20。在这个移位的过程中,我们也发现了一个规律,每进行一次左移位操作,得到的结果是原操作数的一倍(x << n = x * 2^n)。

2.2.6 右移位(>>)

右移位就是将一个操作数的各二进制位全部右移若干位,左边的二进制位补0或者补1(如果操作数是无符号数或有符号正数就补0,如果是有符号负数就补1),右边的二进制位丢弃。话不多说,来看例子。

5 >> 2 = ? (-5) >> 2 = ?

将十进制转化为二进制。

5转化为二进制:0b00000101

-5转化为二进制:0b11111011

对操作数0b00000101开始进行右移位两次。

0b00000101 (5)        0b11111011 (-5)

第一次右移位:0b00000010 (2) = 5 / 2  0b11111101 (-3)

第二次右移位:0b00000001 (1) = 2 / 1  0b11111110 (0)

将得出的结果(二进制)还原成十进制形式。

0b00000001转化为十进制:1

0b11111110转化为十进制:0 (按照负数解析)

所以可以得出结论:5 >> 2 = 1。在这个移位的过程中,我们也同样发现了一个规律,每进行一次右移位操作,得到的结果是原操作数的一半(x >> n = x / 2^n)。

相关实践学习
钉钉群中如何接收IoT温控器数据告警通知
本实验主要介绍如何将温控器设备以MQTT协议接入IoT物联网平台,通过云产品流转到函数计算FC,调用钉钉群机器人API,实时推送温湿度消息到钉钉群。
阿里云AIoT物联网开发实战
本课程将由物联网专家带你熟悉阿里云AIoT物联网领域全套云产品,7天轻松搭建基于Arduino的端到端物联网场景应用。 开始学习前,请先开通下方两个云产品,让学习更流畅: IoT物联网平台:https://iot.console.aliyun.com/ LinkWAN物联网络管理平台:https://linkwan.console.aliyun.com/service-open
相关文章
|
27天前
|
存储 C语言 C++
【c语言】运算符汇总(万字解析)
今天博主跟大家分享了c语言中各种操作符的功能、使用方法以及优先级和结合性,并且与大家深入探讨了表达式求值的两个重要规则--算数转换和整形提升。学习这些知识对我们的C语言和C++学习都有着极大的帮助。
106 2
|
19天前
|
存储 网络协议 编译器
【C语言】深入解析C语言结构体:定义、声明与高级应用实践
通过根据需求合理选择结构体定义和声明的放置位置,并灵活结合动态内存分配、内存优化和数据结构设计,可以显著提高代码的可维护性和运行效率。在实际开发中,建议遵循以下原则: - **模块化设计**:尽可能封装实现细节,减少模块间的耦合。 - **内存管理**:明确动态分配与释放的责任,防止资源泄漏。 - **优化顺序**:合理排列结构体成员以减少内存占用。
95 14
|
23天前
|
存储 编译器 C语言
【C语言】数据类型全解析:编程效率提升的秘诀
在C语言中,合理选择和使用数据类型是编程的关键。通过深入理解基本数据类型和派生数据类型,掌握类型限定符和扩展技巧,可以编写出高效、稳定、可维护的代码。无论是在普通应用还是嵌入式系统中,数据类型的合理使用都能显著提升程序的性能和可靠性。
41 8
|
19天前
|
算法 Linux
深入探索Linux内核的内存管理机制
本文旨在为读者提供对Linux操作系统内核中内存管理机制的深入理解。通过探讨Linux内核如何高效地分配、回收和优化内存资源,我们揭示了这一复杂系统背后的原理及其对系统性能的影响。不同于常规的摘要,本文将直接进入主题,不包含背景信息或研究目的等标准部分,而是专注于技术细节和实际操作。
|
23天前
|
存储 算法 C语言
【C语言】深入浅出:C语言链表的全面解析
链表是一种重要的基础数据结构,适用于频繁的插入和删除操作。通过本篇详细讲解了单链表、双向链表和循环链表的概念和实现,以及各类常用操作的示例代码。掌握链表的使用对于理解更复杂的数据结构和算法具有重要意义。
225 6
|
19天前
|
存储 缓存 网络协议
Linux操作系统的内核优化与性能调优####
本文深入探讨了Linux操作系统内核的优化策略与性能调优方法,旨在为系统管理员和高级用户提供一套实用的指南。通过分析内核参数调整、文件系统选择、内存管理及网络配置等关键方面,本文揭示了如何有效提升Linux系统的稳定性和运行效率。不同于常规摘要仅概述内容的做法,本摘要直接指出文章的核心价值——提供具体可行的优化措施,助力读者实现系统性能的飞跃。 ####
|
20天前
|
监控 算法 Linux
Linux内核锁机制深度剖析与实践优化####
本文作为一篇技术性文章,深入探讨了Linux操作系统内核中锁机制的工作原理、类型及其在并发控制中的应用,旨在为开发者提供关于如何有效利用这些工具来提升系统性能和稳定性的见解。不同于常规摘要的概述性质,本文将直接通过具体案例分析,展示在不同场景下选择合适的锁策略对于解决竞争条件、死锁问题的重要性,以及如何根据实际需求调整锁的粒度以达到最佳效果,为读者呈现一份实用性强的实践指南。 ####
|
23天前
|
存储 网络协议 算法
【C语言】进制转换无难事:二进制、十进制、八进制与十六进制的全解析与实例
进制转换是计算机编程中常见的操作。在C语言中,了解如何在不同进制之间转换数据对于处理和显示数据非常重要。本文将详细介绍如何在二进制、十进制、八进制和十六进制之间进行转换。
32 5
|
23天前
|
C语言 开发者
【C语言】断言函数 -《深入解析C语言调试利器 !》
断言(assert)是一种调试工具,用于在程序运行时检查某些条件是否成立。如果条件不成立,断言会触发错误,并通常会终止程序的执行。断言有助于在开发和测试阶段捕捉逻辑错误。
34 5
|
20天前
|
缓存 监控 网络协议
Linux操作系统的内核优化与实践####
本文旨在探讨Linux操作系统内核的优化策略与实际应用案例,深入分析内核参数调优、编译选项配置及实时性能监控的方法。通过具体实例讲解如何根据不同应用场景调整内核设置,以提升系统性能和稳定性,为系统管理员和技术爱好者提供实用的优化指南。 ####

相关产品

  • 物联网平台