多解法综合题:「动态规划」&「前缀和 二分」&「双指针」| Java 刷题打卡

简介: 多解法综合题:「动态规划」&「前缀和 二分」&「双指针」| Java 刷题打卡

网络异常,图片无法展示
|


题目描述



这是 LeetCode 上的 1004. 最大连续1的个数 III ,难度为 中等


Tag : 「双指针」、「滑动窗口」、「二分」、「前缀和」


给定一个由若干 0 和 1 组成的数组 A,我们最多可以将 K 个值从 0 变成 1 。


返回仅包含 1 的最长(连续)子数组的长度。


示例 1:


输入:A = [1,1,1,0,0,0,1,1,1,1,0], K = 2
输出:6
解释: 
[1,1,1,0,0,1,1,1,1,1,1]
粗体数字从 0 翻转到 1,最长的子数组长度为 6。
复制代码


示例 2:


输入:A = [0,0,1,1,0,0,1,1,1,0,1,1,0,0,0,1,1,1,1], K = 3
输出:10
解释:
[0,0,1,1,1,1,1,1,1,1,1,1,0,0,0,1,1,1,1]
粗体数字从 0 翻转到 1,最长的子数组长度为 10。
复制代码


提示:


  • 1 <= A.length <= 20000
  • 0 <= K <= A.length
  • A[i] 为 0 或 1


动态规划(TLE)



看到本题,其实首先想到的是 DP,但是 DP 是 O(nk)O(nk) 算法。


看到了数据范围是 10^4104,那么时空复杂度应该都是 10^8108


空间可以通过「滚动数组」优化到 10^4104,但时间无法优化,会超时。


PS. 什么时候我们会用 DP 来解本题?通过如果 K 的数量级不超过 1000 的话,DP 应该是最常规的做法。


定义 f[i,j]f[i,j] 代表考虑前 ii 个数(并以 A[i]A[i] 为结尾的),最大翻转次数为 jj 时,连续 11 的最大长度。


  • 如果 A[i]A[i] 本身就为 1 的话,无须消耗翻转次数,f[i][j] = f[i - 1][j] + 1f[i][j]=f[i1][j]+1
  • 如果 A[i]A[i] 本身不为 1 的话,由于定义是必须以 A[i]A[i] 为结尾,因此必须要选择翻转该位置,f[i][j] = f[i - 1][j - 1] + 1f[i][j]=f[i1][j1]+1


代码:


class Solution {
    public int longestOnes(int[] nums, int k) {
        int n = nums.length;
        // 
        int[][] f = new int[2][k + 1]; 
        int ans = 0;
        for (int i = 1; i <= n; i++) {
            for (int j = 0; j <= k; j++) {
                if (nums[i - 1] == 1) {
                    f[i & 1][j] = f[(i - 1) & 1][j] + 1;
                } else {
                    f[i & 1][j] = j == 0 ? 0 : f[(i - 1) & 1][j - 1] + 1;
                }
                ans = Math.max(ans, f[i & 1][j]);
            }
        }
        return ans;
    }
}
复制代码


  • 时间复杂度:O(nk)O(nk)
  • 空间复杂度:O(k)O(k)


前缀和 + 二分



从数据范围上分析,平方级别的算法过不了,往下优化就应该是对数级别的算法。


因此,很容易我们就会想到「二分」。


当然还需要我们对问题做一下等价变形。


最大替换次数不超过 k 次,可以将问题转换为找出连续一段区间 [l,r],使得区间中出现 0 的次数不超过 k 次。


我们可以枚举区间 左端点/右端点 ,然后找到其满足「出现 0 的次数不超过 k 次」的最远右端点/最远左端点。


为了快速判断 [l,r] 之间出现 0 的个数,我们需要用到前缀和。


假设 [l,r] 的区间长度为 len,区间和为 tot,那么出现 0 的格式为 len - tol,再与 k 进行比较。


由于数组中不会出现负权值,因此前缀和数组具有「单调性」,那么必然满足「其中一段满足 len - tol <= klentol<=k,另外一段不满足 len - tol <= klentol<=k」。


因此,对于某个确定的「左端点/右端点」而言,以「其最远右端点/最远左端点」为分割点的前缀和数轴,具有「二段性」。可以通过二分来找分割点。


代码:


class Solution {
    public int longestOnes(int[] nums, int k) {
        int n = nums.length;
        int ans = 0;
        int[] sum = new int[n + 1];
        for (int i = 1; i <= n; i++) sum[i] = sum[i - 1] + nums[i - 1];
        for (int i = 0; i < n; i++) {
            int l = 0, r = i;
            while (l < r) {
                int mid = l + r >> 1;
                if (check(sum, mid, i, k)) {
                    r = mid;
                } else {
                    l = mid + 1;
                }
            }
            if (check(sum, r, i, k)) ans = Math.max(ans, i - r + 1);
        }
        return ans;
    }
    boolean check(int[] sum, int l, int r, int k) {
        int tol = sum[r + 1] - sum[l], len = r - l + 1;
        return len - tol <= k;
    }
}
复制代码


  • 时间复杂度:O(n\log{n})O(nlogn)
  • 空间复杂度:O(n)O(n)


关于二分结束后再次 check 的说明:由于「二分」本质是找满足某个性质的分割点,通常我们的某个性质会是「非等值条件」,不一定会取得 =


例如我们很熟悉的:从某个非递减数组中找目标值,找到返回下标,否则返回 -1。


当目标值不存在,「二分」找到的应该是数组内比目标值小或比目标值大的最接近的数。因此二分结束后先进行 check 再使用是一个好习惯。


双指针



由于我们总是比较 lentotk 三者的关系。


因此我们可以使用「滑动窗口」的思路,动态维护一个左右区间 [j, i] 和维护窗口内和 tot


右端点一直右移,左端点在窗口不满足「len - tol <= k」的时候进行右移。


即可做到线程扫描的复杂度:


class Solution {
    public int longestOnes(int[] nums, int k) {
        int n = nums.length;
        int ans = 0;
        for (int i = 0, j = 0, tot = 0; i < n; i++) {
            tot += nums[i];
            while ((i - j + 1) - tot > k) tot -= nums[j++];
            ans = Math.max(ans, i - j + 1);
        }
        return ans;
    }
}
复制代码


  • 时间复杂度:O(n)O(n)
  • 空间复杂度:O(1)O(1)


总结



除了掌握本题解法以外,我还希望你能理解这几种解法是如何被想到的(特别是如何从「动态规划」想到「二分」)。


根据数据范围(复杂度)调整自己所使用的算法的分析能力,比解决该题本身更加重要。


最后



这是我们「刷穿 LeetCode」系列文章的第 No.1004 篇,系列开始于 2021/01/01,截止于起始日 LeetCode 上共有 1916 道题目,部分是有锁题,我们将先将所有不带锁的题目刷完。


在这个系列文章里面,除了讲解解题思路以外,还会尽可能给出最为简洁的代码。如果涉及通解还会相应的代码模板。


为了方便各位同学能够电脑上进行调试和提交代码,我建立了相关的仓库:github.com/SharingSour…


在仓库地址里,你可以看到系列文章的题解链接、系列文章的相应代码、LeetCode 原题链接和其他优选题解。

相关文章
|
8月前
|
Java
0-1背包问题(Java详解)(动态规划)至少与恰好
0-1背包问题(Java详解)(动态规划)至少与恰好
69 1
|
7月前
|
算法 Java 决策智能
Java数据结构与算法:动态规划之背包问题
Java数据结构与算法:动态规划之背包问题
|
7月前
|
Java
2022蓝桥杯大赛软件类省赛Java大学B组真题 刷题统计
2022蓝桥杯大赛软件类省赛Java大学B组真题 刷题统计
71 0
|
8月前
|
算法 Java C++
【Java 刷题记录】位运算
【Java 刷题记录】位运算
59 2
|
8月前
|
算法 Java
Java刷题有感
Java刷题有感
|
8月前
|
Java
JAVA数据结构刷题 -- 二叉树进阶
JAVA数据结构刷题 -- 二叉树进阶
53 0
|
8月前
|
存储 Java
JAVA数据结构刷题 -- 力扣二叉树
JAVA数据结构刷题 -- 力扣二叉树
62 0
|
8月前
|
算法 Java C++
刷题两个月,从入门到字节跳动offer丨GitHub标星16k+,美团Java面试题
刷题两个月,从入门到字节跳动offer丨GitHub标星16k+,美团Java面试题
|
8月前
|
消息中间件 前端开发 Java
java面试刷题软件kafka和mq的区别面试
java面试刷题软件kafka和mq的区别面试
|
8月前
|
Java 索引
JAVA刷题之数组的总结和思路分享
JAVA刷题之数组的总结和思路分享