数据结构和算法躬行记(7)——分治算法

简介:   分治算法(Divide-and-Conquer Algorithm),就是分而治之,把一个复杂问题分成两个或更多个相同或相似的子问题,直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。

  分治算法(Divide-and-Conquer Algorithm),就是分而治之,把一个复杂问题分成两个或更多个相同或相似的子问题,直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。

  分治算法比较适合用递归来实现,而每一层递归都会涉及三个操作:

  (1)分解:将原问题分解为若干个规模较小,相对独立,与原问题形式相同的子问题,缩小问题规模。

  (2)求解:若子问题规模较小且易于解决时(找出基线条件),则直接解。否则,递归地解决各子问题。其中基线条件(base case)通常是数组为空或只包含一个元素。

  (3)合并:将各子问题的解合并为原问题的解。

  分治算法是一种处理问题的思想和技巧,是很多高效算法的基础,例如排序算法(归并和快排)、最大公因数等。

  LeetCode的169. 多数元素,可将数组一分为二,左边递归最大值(left),右边也一样(right),当两者相同,就是找到了;当不同时,比较谁的计数多。

  与动态规划不同,分治算法分解的子问题可以独立求解,并且它们之间没有相关性。

  在《剑指Offer》一书中曾提到,解决复杂问题的3种方法:

  (1)画图,涉及链表、二叉树等数据结构时,画几张草图,可将隐藏的规律变得直观。

  (2)举例,将抽象问题具体化,模拟运行过程,说不定能发现其中规律。

  (3)分解,如果问题很大,则尝试把大问题分解成小问题,然后递归解决,分治法、动态规划等方法都是分解复杂问题的思路。


一、归并排序


  利用递归与分治技术将数据序列划分成越来越小的半子表,再对半子表排序,最后用递归方法将排好序的半子表合并成为越来越大的有序序列,如下所示,思路如图8所示。


function mergeSort(arr) {
  let len = arr.length;
  //基线条件
  if (len < 2) {
    return arr;
  }
  //分解
  let middle = Math.floor(len / 2),
    left = mergeSort(arr.slice(0, middle)),
    right = mergeSort(arr.slice(middle));
  //合并
  return merge(left, right);
}
function merge(left, right) {
  let result = [];
  //求解
  while (left.length && right.length) {
    //小的在左,大的在右
    if (left[0] <= right[0]) {
      result.push(left.shift());
    } else {
      result.push(right.shift());
    }
  }
  while (left.length)
    result.push(left.shift());
  while (right.length)
    result.push(right.shift());
  return result;
}

72.png


图 8

  面试题51 数组中的逆序对。先统计子数组中的逆序对,然后统计两个相邻数组之间的逆序对,在统计的过程中还需要对数组进行归并排序。


二、快速排序


  采用“分而治之”的思想,把大的拆分为小的,小的再拆分为更小的。

  将原序列分为两部分,其中前一部分的所有记录均比后一部分的所有记录小,然后再依次对前后两部分的记录进行快速排序,递归该过程,直到序列中的所有记录均有序为止。

  代码实现如下所示,思路如图9所示。


function quickSort(arr) {
  var length = arr.length;
  //基线条件
  if (length <= 1) {
    return arr;
  }
  var base = arr[0],
    left = [],             //保存小于基准元素的记录
    right = [];            //保存大于基准元素的记录
  //求解
  for (let i = 1; i < length; i++) {
    if (base > arr[i]) {        //放入左边数组
      left.push(arr[i]);
    } else {                    //放入右边数组
      right.push(arr[i]);
    }
  }
  //分解
  left = quickSort(left);
  right = quickSort(right);
  //合并
  return left.concat([base], right);
}


73.png


图 9

  面试题39 数组中出现次数超过一半的数字。问题转换为查找中位数,受快速排序的启发,当基准值的下标刚好是n/2时,那么就是中位数,否则在另外两部分中查找。

  面试题40 最小的 k 个数。采用快速排序思想,基于数组第 k 个数字来调整,比 k 个数小的在左边,大的在右边。

相关文章
|
26天前
|
算法 数据处理 C语言
C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合
本文深入解析了C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合,旨在帮助读者掌握这一高效的数据处理方法。
38 1
|
29天前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
96 4
|
3天前
|
存储 运维 监控
探索局域网电脑监控软件:Python算法与数据结构的巧妙结合
在数字化时代,局域网电脑监控软件成为企业管理和IT运维的重要工具,确保数据安全和网络稳定。本文探讨其背后的关键技术——Python中的算法与数据结构,如字典用于高效存储设备信息,以及数据收集、异常检测和聚合算法提升监控效率。通过Python代码示例,展示了如何实现基本监控功能,帮助读者理解其工作原理并激发技术兴趣。
41 20
|
27天前
|
存储 算法 搜索推荐
Python 中数据结构和算法的关系
数据结构是算法的载体,算法是对数据结构的操作和运用。它们共同构成了计算机程序的核心,对于提高程序的质量和性能具有至关重要的作用
|
26天前
|
数据采集 存储 算法
Python 中的数据结构和算法优化策略
Python中的数据结构和算法如何进行优化?
|
1月前
|
算法
数据结构之路由表查找算法(深度优先搜索和宽度优先搜索)
在网络通信中,路由表用于指导数据包的传输路径。本文介绍了两种常用的路由表查找算法——深度优先算法(DFS)和宽度优先算法(BFS)。DFS使用栈实现,适合路径问题;BFS使用队列,保证找到最短路径。两者均能有效查找路由信息,但适用场景不同,需根据具体需求选择。文中还提供了这两种算法的核心代码及测试结果,验证了算法的有效性。
102 23
|
1月前
|
算法
数据结构之蜜蜂算法
蜜蜂算法是一种受蜜蜂觅食行为启发的优化算法,通过模拟蜜蜂的群体智能来解决优化问题。本文介绍了蜜蜂算法的基本原理、数据结构设计、核心代码实现及算法优缺点。算法通过迭代更新蜜蜂位置,逐步优化适应度,最终找到问题的最优解。代码实现了单链表结构,用于管理蜜蜂节点,并通过适应度计算、节点移动等操作实现算法的核心功能。蜜蜂算法具有全局寻优能力强、参数设置简单等优点,但也存在对初始化参数敏感、计算复杂度高等缺点。
60 20
|
19小时前
|
供应链 算法
【算法】——快排,分治算法合集
本文主要介绍排序中的快排思想的应用,做到一法通万法的效果
|
26天前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
57 1
|
1月前
|
机器学习/深度学习 算法 C++
数据结构之鲸鱼算法
鲸鱼算法(Whale Optimization Algorithm,WOA)是由伊朗研究员Seyedali Mirjalili于2016年提出的一种基于群体智能的全局优化算法,灵感源自鲸鱼捕食时的群体协作行为。该算法通过模拟鲸鱼的围捕猎物和喷出气泡网的行为,结合全局搜索和局部搜索策略,有效解决了复杂问题的优化需求。其应用广泛,涵盖函数优化、机器学习、图像处理等领域。鲸鱼算法以其简单直观的特点,成为初学者友好型的优化工具,但同时也存在参数敏感、可能陷入局部最优等问题。提供的C++代码示例展示了算法的基本实现和运行过程。
51 0