Google Earth Engine ——数据全解析专辑(COPERNICUS/S5P/OFFL/L3_AER_AI和LH)气溶胶指数数据集

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
简介: Google Earth Engine ——数据全解析专辑(COPERNICUS/S5P/OFFL/L3_AER_AI和LH)气溶胶指数数据集

OFFL/L3_AER_AI

This dataset provides offline high-resolution imagery of the UV Aerosol Index (UVAI), also called the Absorbing Aerosol Index (AAI).


The AAI is based on wavelength-dependent changes in Rayleigh scattering in the UV spectral range for a pair of wavelengths. The difference between observed and modelled reflectance results in the AAI. When the AAI is positive, it indicates the presence of UV-absorbing aerosols like dust and smoke. It is useful for tracking the evolution of episodic aerosol plumes from dust outbreaks, volcanic ash, and biomass burning.


The wavelengths used have very low ozone absorption, so unlike aerosol optical thickness measurements, AAI can be calculated in the presence of clouds. Daily global coverage is therefore possible.


For this L3 AER_AI product, the absorbing_aerosol_index is calculated with a pair of measurements at the 354 nm and 388 nm wavelengths. The COPERNICUS/S5P/OFFL/L3_SO2 product has the absorbing_aerosol_index calculated using the 340 nm and 380 nm wavelengths.

OFFL/L3_AER_AI


该数据集提供了紫外线气溶胶指数 (UVAI) 的离线高分辨率图像,也称为吸收气溶胶指数 (AAI)。


AAI 基于一对波长的 UV 光谱范围内瑞利散射的波长相关变化。观察到的和模拟的反射率之间的差异导致了 AAI。当 AAI 为正值时,表明存在吸收紫外线的气溶胶,如灰尘和烟雾。它可用于跟踪粉尘爆发、火山灰和生物质燃烧引起的偶发气溶胶羽流的演变。


所使用的波长对臭氧的吸收非常低,因此与气溶胶光学厚度测量不同,AAI 可以在有云的情况下计算。因此,每日全球报道是可能的。


对于此 L3 AER_AI 产品,吸收气溶胶指数是通过在 354 nm 和 388 nm 波长处进行的一对测量计算得出的。 COPERNICUS/S5P/OFFL/L3_SO2 产品具有使用 340 nm 和 380 nm 波长计算的吸收气溶胶指数。


OFFL L3 Product

To make our OFFL L3 products, we find areas within the product's bounding box with data using a command like this:

harpconvert --format hdf5 --hdf5-compression 9
-a 'absorbing_aerosol_index_validity>50;derive(datetime_stop {time})'
S5P_OFFL_L2__AER_AI_20181030T213916_20181030T232046_05427_01_010200_20181105T210529.nc
grid_info.h5


We then merge all the data into one large mosaic (area-averaging values for pixels that may have different values for different times). From the mosaic, we create a set of tiles containing orthorectified raster data.

Example harpconvert invocation for one tile:

harpconvert --format hdf5 --hdf5-compression 9
-a 'absorbing_aerosol_index_validity>50;derive(datetime_stop {time});
bin_spatial(2001, 50.000000, 0.01, 2001, -120.000000, 0.01);
keep(absorbing_aerosol_index,sensor_altitude,sensor_azimuth_angle,
     sensor_zenith_angle,solar_azimuth_angle,solar_zenith_angle)'
S5P_OFFL_L2__AER_AI_20181030T213916_20181030T232046_05427_01_010200_20181105T210529.nc
output.h5


Dataset Availability

2018-07-04T13:34:21 - 2021-09-04T00:00:00

Dataset Provider

European Union/ESA/Copernicus

Collection Snippet

ee.ImageCollection("COPERNICUS/S5P/OFFL/L3_AER_AI")

Resolution

0.01 degrees

Bands Table

Name Description Min* Max* Units
absorbing_aerosol_index A measure of the prevalence of aerosols in the atmosphere, calculated by [this equation](https://earth.esa.int/web/sentinel/technical-guides/sentinel-5p/level-2/aerosol-index) using the 354/388 wavelength pair. -21 39
sensor_altitude Altitude of the satellite with respect to the geodetic sub-satellite point (WGS84). 828543 856078 m
sensor_azimuth_angle Azimuth angle of the satellite at the ground pixel location (WGS84); angle measured East-of-North. -180 180 degrees
sensor_zenith_angle Zenith angle of the satellite at the ground pixel location (WGS84); angle measured away from the vertical. 0.098 66.87 degrees
solar_azimuth_angle Azimuth angle of the Sun at the ground pixel location (WGS84); angle measured East-of-North. -180 180 degrees
solar_zenith_angle Zenith angle of the satellite at the ground pixel location (WGS84); angle measured away from the vertical. 8 88 degrees


* = Values are estimated

影像属性:

Name Type Description
ALGORITHM_VERSION String The algorithm version used in L2 processing. It's separate from the processor (framework) version, to accommodate different release schedules for different products.
BUILD_DATE String The date, expressed as milliseconds since 1 Jan 1970, when the software used to perform L2 processing was built.
HARP_VERSION Int The version of the HARP tool used to grid the L2 data into an L3 product.
INSTITUTION String The institution where data processing from L1 to L2 was performed.
L3_PROCESSING_TIME Int The date, expressed as milliseconds since 1 Jan 1970, when Google processed the L2 data into L3 using harpconvert.
LAT_MAX Double The maximum latitude of the asset (degrees).
LAT_MIN Double The minimum latitude of the asset (degrees).
LON_MAX Double The maximum longitude of the asset (degrees).
LON_MIN Double The minimum longitude of the asset (degrees).
ORBIT Int The orbit number of the satellite when the data was acquired.
PLATFORM String Name of the platform which acquired the data.
PROCESSING_STATUS String The processing status of the product on a global level, mainly based on the availability of auxiliary input data. Possible values are "Nominal" and "Degraded".
PROCESSOR_VERSION String The version of the software used for L2 processing, as a string of the form "major.minor.patch".
PRODUCT_ID String Id of the L2 product used to generate this asset.
PRODUCT_QUALITY String Indicator that specifies whether the product quality is degraded or not. Allowed values are "Degraded" and "Nominal".
SENSOR String Name of the sensor which acquired the data.
SPATIAL_RESOLUTION String Spatial resolution at nadir. For most products this is `3.5x7km2`, except for `L2__O3__PR`, which uses `28x21km2`, and `L2__CO____` and `L2__CH4___`, which both use `7x7km2`. This attribute originates from the CCI standard.
TIME_REFERENCE_DAYS_SINCE_1950 Int Days from 1 Jan 1950 to when the data was acquired.
TIME_REFERENCE_JULIAN_DAY Double The Julian day number when the data was acquired.
TRACKING_ID String UUID for the L2 product file.


代码:

var collection = ee.ImageCollection('COPERNICUS/S5P/OFFL/L3_AER_AI')
  .select('absorbing_aerosol_index')
  .filterDate('2019-06-01', '2019-06-06');
var band_viz = {
  min: -1,
  max: 2.0,
  palette: ['black', 'blue', 'purple', 'cyan', 'green', 'yellow', 'red']
};
Map.addLayer(collection.mean(), band_viz, 'S5P Aerosol');
Map.setCenter(-118.82, 36.1, 5);


相关文章
|
10天前
|
机器学习/深度学习 人工智能 自然语言处理
AI技术深度解析:从基础到应用的全面介绍
人工智能(AI)技术的迅猛发展,正在深刻改变着我们的生活和工作方式。从自然语言处理(NLP)到机器学习,从神经网络到大型语言模型(LLM),AI技术的每一次进步都带来了前所未有的机遇和挑战。本文将从背景、历史、业务场景、Python代码示例、流程图以及如何上手等多个方面,对AI技术中的关键组件进行深度解析,为读者呈现一个全面而深入的AI技术世界。
68 10
|
1月前
|
人工智能 关系型数据库 分布式数据库
拥抱Data+AI|“全球第一”雅迪如何实现智能营销?DMS+PolarDB注入数据新活力
针对雅迪“云销通App”的需求与痛点,本文将介绍阿里云瑶池数据库DMS+PolarDB for AI提供的一站式Data+AI解决方案,助力销售人员高效用数,全面提升销售管理效率。
|
17天前
|
机器学习/深度学习 人工智能 PyTorch
【AI系统】数据并行
数据并行是一种在分布式AI系统中广泛应用的技术,通过将数据集划分成多个子集并在不同计算节点上并行处理,以提高计算效率和速度。在大规模机器学习和深度学习训练中,数据并行可以显著加快模型训练速度,减少训练时间,提升模型性能。每个计算节点接收完整的模型副本,但处理不同的数据子集,从而分摊计算任务,提高处理速度和效率。数据并行按同步方式可分为同步数据并行和异步数据并行,按实现方式包括数据并行、分布式数据并行、完全分片的数据并行等。其中,分布式数据并行(DDP)是当前应用最广泛的并行算法之一,通过高效的梯度聚合和参数同步机制,确保模型一致性,适用于大型NPU集群和AI系统。
78 7
【AI系统】数据并行
|
12天前
|
人工智能 自然语言处理 前端开发
OpenAI 12天发布会全解析 | AI大咖说
OpenAI近日宣布将在12个工作日内每天进行一场直播,展示一系列新产品和样品。首日推出GPT-o1正式版,性能大幅提升;次日展示Reinforcement Fine-Tuning技术,提高模型决策质量;第三天推出Sora,实现高质量视频生成;第四天加强Canvas,提升多模态创作效率;第五天发布ChatGPT扩展功能,增强灵活性;第六天推出ChatGPT Vision,实现多模态互动;第七天推出ChatGPT Projects,优化项目管理。这些新技术正改变我们的生活和工作方式。
765 9
|
1月前
|
人工智能 算法 BI
聚焦AI与BI融合,引领数智化新潮流 | 【瓴羊数据荟】瓴羊数据Meet Up城市行第一站完美收官!
当BI遇见AI,洞见变得触手可及 —— 瓴羊「数据荟」数据Meet Up城市行·杭州站启幕,欢迎参与。
424 5
聚焦AI与BI融合,引领数智化新潮流 | 【瓴羊数据荟】瓴羊数据Meet Up城市行第一站完美收官!
|
27天前
|
存储 人工智能 编译器
【AI系统】昇腾数据布局转换
华为昇腾NPU采用独特的NC1HWC0五维数据格式,旨在优化AI处理器的矩阵乘法运算和访存效率。此格式通过将C维度分割为C1份C0,适应达芬奇架构的高效计算需求,支持FP16和INT8数据类型。此外,昇腾还引入了NZ分形格式,进一步提升数据搬运和矩阵计算效率。AI编译器通过智能布局转换,确保在不同硬件上达到最优性能。
51 3
|
28天前
|
机器学习/深度学习 人工智能 数据处理
【AI系统】NV Switch 深度解析
英伟达的NVSwitch技术是高性能计算领域的重大突破,旨在解决多GPU系统中数据传输的瓶颈问题。通过提供比PCIe高10倍的带宽,NVLink实现了GPU间的直接数据交换,减少了延迟,提高了吞吐量。NVSwitch则进一步推动了这一技术的发展,支持更多NVLink接口,实现无阻塞的全互联GPU系统,极大提升了数据交换效率和系统灵活性,为构建强大的计算集群奠定了基础。
61 3
|
1月前
|
机器学习/深度学习 存储 人工智能
AI助力电子邮件安全防护,CISO解析新策略
AI助力电子邮件安全防护,CISO解析新策略
|
1月前
|
存储 人工智能 安全
CPFS深度解析:并行文件存储加速AI创新
在生成式AI的大潮中,并行文件系统作为高性能数据底座,为AI算力提供高吞吐、低延迟的数据存储服务。在本话题中,我们将介绍阿里云并行文件存储CPFS针对AI智算场景而提供的产品能力演进与更新,深入讲解在性能、成本、稳定、安全等方面的技术创新。
116 0
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
思通数科AI平台在尽职调查中的技术解析与应用
思通数科AI多模态能力平台结合OCR、NLP和深度学习技术,为IPO尽职调查、融资等重要交易环节提供智能化解决方案。平台自动识别、提取并分类海量文档,实现高效数据核验与合规性检查,显著提升审查速度和精准度,同时保障敏感信息管理和数据安全。
116 11

热门文章

最新文章

推荐镜像

更多