MySQL 索引优化实践(上)

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS PostgreSQL,集群系列 2核4GB
简介: MySQL 索引优化实践

案例


创建表的 DDL


# DDL 语句
CREATE TABLE `employees` (
  `id` INT(10) NOT NULL AUTO_INCREMENT,
  `name` VARCHAR(24) NOT NULL DEFAULT '' COMMENT '姓名' COLLATE 'utf8_general_ci',
  `age` INT(10) NOT NULL DEFAULT '0' COMMENT '年龄',
  `position` VARCHAR(20) NOT NULL DEFAULT '' COMMENT '职位' COLLATE 'utf8_general_ci',
  `hire_time` TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '入职时间',
  PRIMARY KEY (`id`) USING BTREE,
  INDEX `idx_name_age_position` (`name`, `age`, `position`) USING BTREE,
  INDEX `idx_age` (`age`) USING BTREE
)
COMMENT='员工记录表';
# 随机数(随机生成员工年龄)
drop function if exists `rand_num`;
delimiter ;;
create function `rand_num`(
    `start_num` integer,
    `end_num` integer
)
    returns int
    comment ''
begin
    return floor(start_num + rand() * (end_num - start_num + 1));
end ;;
# 随机字符串函数
drop function if exists `rand_str`;
delimiter ;;
create
    definer = `root`@`localhost` function `rand_str`(
    `n` int
)
    returns varchar(255)
begin
    declare chars_str varchar(100) default 'abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz';
    declare return_str varchar(100) default '';
    declare i int default 0;
    while i < n
        do
            set return_str = concat(return_str, substring(chars_str, floor(1 + rand() * 52), 1));
            set i = i + 1;
        end while;
    return return_str;
end ;;
# 生成测试数据
drop procedure if exists `insert_emp`;
delimiter ;;
create procedure `insert_emp`(
    in `max_num` int(10)
)
begin
    declare i int default 0;
    set autocommit = 0;
    repeat
        set i = i+1;
        insert into `employees` (`name`, `age`, `position`, `hire_time`)
        values (rand_str(6), rand_num(20, 40), 'dev', now());
    until i = max_num
        end repeat;
    commit;
end ;;
delimiter ;
call insert_emp(10000);


索引优化


索引下推


对于辅助的联合索引(name,age,position),正常情况按照最左前缀原则,SELECT * FROM employees WHERE name like 'LiLei%' AND age = 22 AND position ='manager' 这种情况只会走name字段索引,因为根据name字段过滤完,得到的索引行里的age和position是无序的,无法很好的利用索引。 在MySQL5.6之前的版本,这个查询只能在联合索引里匹配到名字是 'LiLei' 开头的索引,然后拿这些索引对应的主键逐个回表,到主键索引上找出相应的记录,再比对ageposition这两个字段的值是否符合。


MySQL 5.6引入了索引下推优化,可以在索引遍历过程中,对索引中包含的所有字段先做判断,过滤掉不符合条件的记录之后再回表,可以有效的减少回表次数。使用了索引下推优化后,上面那个查询在联合索引里匹配到名字是** 'LiLei' 开头的索引之后,同时还会在索引里过滤ageposition**这两个字段,拿着过滤完剩下的索引对应的主键id再回表查整行数据。


索引下推会减少回表次数,对于innodb引擎的表索引下推只能用于二级索引,innodb的主键索引(聚簇索引)树叶子节点上保存的是全行数据,所以这个时候索引下推并不会起到减少查询全行数据的效果。


为什么范围查找Mysql没有用索引下推优化?估计应该是Mysql认为范围查找过滤的结果集过大,like KK% 在绝大多数情况来看,过滤后的结果集比较小,所以这里Mysql选择给 like KK% 用了索引下推优化,当然这也不是绝对的,有时like KK% 也不一定就会走索引下推。


常见的几种场景


1、联合索引的第一个字段是范围查找不会走索引


EXPLAIN SELECT * FROM employees WHERE name > 'SAN ZHANG' AND age = 22 AND position ='dev';


image.png


结论:联合索引第一个字段就用范围查找不会走索引,mysql内部可能觉得第一个字段就用范围,结果集应该很大,回表效率不高,还不如就全表扫描


2、强制走索引


EXPLAIN SELECT * FROM employees force index(idx_name_age_position) WHERE name > 'SAN ZHANG' AND age = 22 AND position ='dev';


image.png


结论:虽然使用了强制走索引让联合索引第一个字段范围查找也走了索引,扫描的行 rows 看上去少了一点,但是最终查找效率不一定比全表扫描搞,因为回表效率不高 做一个小实验:


# 关闭查询缓存
set global query_cache_size=0;
# 执行时间 0.1 秒
SELECT * FROM employees WHERE name > 'SAN ZHANG';
# 执行时间 0.15 秒
SELECT * FROM employees force index(idx_name_age_position) WHERE name > 'SAN ZHANG';;


3、覆盖索引优化


EXPLAIN SELECT name,age,position FROM employees WHERE name > 'SAN ZHANG' AND age = 22 AND position ='dev';

image.pngimage.png


4、in 和 or 在数据量比较大的情况下下会走索引,在表数据记录不多的情况下会选择全表扫描


EXPLAIN SELECT name,age,position FROM employees WHERE name in ('SAN ZHANG', 'SI Li', 'MAZI WQNAG', 'LIU ZHAO') AND age = 22 AND position ='dev';


image.png


EXPLAIN SELECT name,age,position FROM employees WHERE 
(name = 'SAN ZHANG' or name = 'SI Li' or name = 'MAZI WQNAG' or name = 'LIU ZHAO') 
AND age = 22 AND position ='dev';


image.png


创建一张 employees_temp 表里面就保留少量几条记录


CREATE TABLE `employees_temp` (
  `id` INT(10) NOT NULL AUTO_INCREMENT,
  `name` VARCHAR(24) NOT NULL DEFAULT '' COMMENT '姓名' ,
  `age` INT(10) NOT NULL DEFAULT '0' COMMENT '年龄',
  `position` VARCHAR(20) NOT NULL DEFAULT '' COMMENT '职位' ,
  `hire_time` TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '入职时间',
  PRIMARY KEY (`id`) USING BTREE,
  INDEX `idx_name_age_position` (`name`, `age`, `position`) USING BTREE
)
COMMENT='员工记录表';
insert into `employees_temp`(name, age, position) values ('SAN ZHANG', 23, 'dev');
insert into `employees_temp`(name, age, position) values ('SI Li', 23, 'dev');
insert into `employees_temp`(name, age, position) values ('LIU ZHAO', 26, 'dev');
insert into `employees_temp`(name, age, position) values ('LING AI', 38, 'manager');


EXPLAIN SELECT * FROM employees_temp WHERE name in ('SAN ZHANG', 'SI Li', 'MAZI WQNAG', 'LIU ZHAO') AND age = 22 AND position ='dev';


image.png


EXPLAIN SELECT * FROM employees_temp WHERE (name = 'SAN ZHANG' or name = 'SI Li' or name = 'MAZI WQNAG' or name = 'LIU ZHAO') AND age = 22 AND position ='dev';


image.png


5、like 'SAN%' 一般都会走索引


EXPLAIN SELECT name,age,position FROM employees WHERE name like 'SAN%' AND age = 22 AND position ='dev';


image.png


EXPLAIN SELECT * FROM employees WHERE name like 'SAN%' AND age = 22 AND position ='dev';


image.png


选择合适的索引


索引分析案例


EXPLAIN select * from employees where name > 'a';


image.png


如果用name索引需要遍历name字段联合索引树,然后还需要根据遍历出来的主键值去主键索引树里再去查出最终数据,成本比全表扫描还高,可以用覆盖索引优化,这样只需要遍历name字段的联合索引树就能拿到所有结果,如下:


EXPLAIN select name,age,position from employees where name > 'a' ; 


image.png


EXPLAIN select * from employees where name > 'zzz' ;


image.png


Trace 工具使用


对于上面这两种 name>'a' 和 name>'zzz' 的执行结果,mysql最终是否选择走索引或者一张表涉及多个索引,mysql最终如何选择索引,我们可以用trace工具来一查究竟,开启trace工具会影响mysql性能,所以只能临时分析sql使用,用完之后立即关闭trace工具用法:


set session optimizer_trace="enabled=on",end_markers_in_json=on;  --开启trace
select * from employees where name > 'a' order by position;
SELECT * FROM information_schema.OPTIMIZER_TRACE;
查看trace字段:
{
  "steps": [
    {
      "join_preparation": {  --第一阶段:SQL准备阶段,格式化sql
        "select#": 1,
        "steps": [
          {
            "expanded_query": "/* select#1 */ select `employees`.`id` AS `id`,`employees`.`name` AS `name`,`employees`.`age` AS `age`,`employees`.`position` AS `position`,`employees`.`hire_time` AS `hire_time` from `employees` where (`employees`.`name` > 'a') order by `employees`.`position`"
          }
        ] /* steps */
      } /* join_preparation */
    },
    {
      "join_optimization": {  --第二阶段:SQL 优化阶段
        "select#": 1,
        "steps": [
          {
            "condition_processing": { --条件处理
              "condition": "WHERE",
              "original_condition": "(`employees`.`name` > 'a')",
              "steps": [
                {
                  "transformation": "equality_propagation",
                  "resulting_condition": "(`employees`.`name` > 'a')"
                },
                {
                  "transformation": "constant_propagation",
                  "resulting_condition": "(`employees`.`name` > 'a')"
                },
                {
                  "transformation": "trivial_condition_removal",
                  "resulting_condition": "(`employees`.`name` > 'a')"
                }
              ] /* steps */
            } /* condition_processing */
          },
          {
            "substitute_generated_columns": {
            } /* substitute_generated_columns */
          },
          {
            "table_dependencies": [  --表依赖详情
              {
                "table": "`employees`",
                "row_may_be_null": false,
                "map_bit": 0,
                "depends_on_map_bits": [
                ] /* depends_on_map_bits */
              }
            ] /* table_dependencies */
          },
          {
            "ref_optimizer_key_uses": [
            ] /* ref_optimizer_key_uses */
          },
          {
            "rows_estimation": [  --预估表的访问成本
              {
                "table": "`employees`",
                "range_analysis": {
                  "table_scan": {    --全表扫描情况
                    "rows": 120085,  --扫描行数
                    "cost": 24372    --查询成本
                  } /* table_scan */,
                  "potential_range_indexes": [  --查询可能使用的索引
                    {
                      "index": "PRIMARY",  --主键索引
                      "usable": false,
                      "cause": "not_applicable"
                    },
                    {
                      "index": "idx_name_age_position", --辅助索引
                      "usable": true,
                      "key_parts": [
                        "name",
                        "age",
                        "position",
                        "id"
                      ] /* key_parts */
                    }
                  ] /* potential_range_indexes */,
                  "setup_range_conditions": [
                  ] /* setup_range_conditions */,
                  "group_index_range": {
                    "chosen": false,
                    "cause": "not_group_by_or_distinct"
                  } /* group_index_range */,
                  "analyzing_range_alternatives": {  --分析各个索引使用成本
                    "range_scan_alternatives": [
                      {
                        "index": "idx_name_age_position",
                        "ranges": [
                          "a < name"  --索引使用范围
                        ] /* ranges */,
                        "index_dives_for_eq_ranges": true,
                        "rowid_ordered": false,  --使用该索引获取的记录是否按照主键排序
                        "using_mrr": false,
                        "index_only": false,     --是否使用覆盖索引
                        "rows": 60042,           --索引扫描的行数
                        "cost": 72051,           --索引使用成本
                        "chosen": false,         --是否选择该索引
                        "cause": "cost"
                      }
                    ] /* range_scan_alternatives */,
                    "analyzing_roworder_intersect": {
                      "usable": false,
                      "cause": "too_few_roworder_scans"
                    } /* analyzing_roworder_intersect */
                  } /* analyzing_range_alternatives */
                } /* range_analysis */
              }
            ] /* rows_estimation */
          },
          {
            "considered_execution_plans": [
              {
                "plan_prefix": [
                ] /* plan_prefix */,
                "table": "`employees`",
                "best_access_path": {     --最优访问路径
                  "considered_access_paths": [  --最终选择的访问路径  
                    {
                      "rows_to_scan": 120085,
                      "access_type": "scan",  --访问类型:为 scan, 全表扫描
                      "resulting_rows": 120085,
                      "cost": 24370,
                      "chosen": true,         --确定选择
                      "use_tmp_table": true
                    }
                  ] /* considered_access_paths */
                } /* best_access_path */,
                "condition_filtering_pct": 100,
                "rows_for_plan": 120085,
                "cost_for_plan": 24370,
                "sort_cost": 120085,
                "new_cost_for_plan": 144455,
                "chosen": true
              }
            ] /* considered_execution_plans */
          },
          {
            "attaching_conditions_to_tables": {
              "original_condition": "(`employees`.`name` > 'a')",
              "attached_conditions_computation": [
              ] /* attached_conditions_computation */,
              "attached_conditions_summary": [
                {
                  "table": "`employees`",
                  "attached": "(`employees`.`name` > 'a')"
                }
              ] /* attached_conditions_summary */
            } /* attaching_conditions_to_tables */
          },
          {
            "clause_processing": {
              "clause": "ORDER BY",
              "original_clause": "`employees`.`position`",
              "items": [
                {
                  "item": "`employees`.`position`"
                }
              ] /* items */,
              "resulting_clause_is_simple": true,
              "resulting_clause": "`employees`.`position`"
            } /* clause_processing */
          },
          {
            "reconsidering_access_paths_for_index_ordering": {
              "clause": "ORDER BY",
              "index_order_summary": {
                "table": "`employees`",
                "index_provides_order": false,
                "order_direction": "undefined",
                "index": "unknown",
                "plan_changed": false
              } /* index_order_summary */
            } /* reconsidering_access_paths_for_index_ordering */
          },
          {
            "refine_plan": [
              {
                "table": "`employees`"
              }
            ] /* refine_plan */
          }
        ] /* steps */
      } /* join_optimization */
    },
    {
      "join_execution": {  --第三阶段: SQL 执行阶段
        "select#": 1,
        "steps": [
          {
            "filesort_information": [
              {
                "direction": "asc",
                "table": "`employees`",
                "field": "position"
              }
            ] /* filesort_information */,
            "filesort_priority_queue_optimization": {
              "usable": false,
              "cause": "not applicable (no LIMIT)"
            } /* filesort_priority_queue_optimization */,
            "filesort_execution": [
            ] /* filesort_execution */,
            "filesort_summary": {
              "rows": 120003,
              "examined_rows": 120003,
              "number_of_tmp_files": 34,
              "sort_buffer_size": 262056,
              "sort_mode": "<sort_key, packed_additional_fields>"
            } /* filesort_summary */
          }
        ] /* steps */
      } /* join_execution */
    }
  ] /* steps */
}
结论:全表扫描的成本低于索引扫描,所以mysql最终选择全表扫描
select * from employees where name > 'zzz' order by position;
SELECT * FROM information_schema.OPTIMIZER_TRACE;
查看trace字段可知索引扫描的成本低于全表扫描,所以mysql最终选择索引扫描
set session optimizer_trace="enabled=off";    --关闭trace



相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
18天前
|
关系型数据库 MySQL Linux
MySQL原理简介—6.简单的生产优化案例
本文介绍了数据库和存储系统的几个主题: 1. **MySQL日志的顺序写和数据文件的随机读指标**:解释了磁盘随机读和顺序写的原理及对数据库性能的影响。 2. **Linux存储系统软件层原理及IO调度优化原理**:解析了Linux存储系统的分层架构,包括VFS、Page Cache、IO调度等,并推荐使用deadline算法优化IO调度。 3. **数据库服务器使用的RAID存储架构**:介绍了RAID技术的基本概念及其如何通过多磁盘阵列提高存储容量和数据冗余性。 4. **数据库Too many connections故障定位**:分析了MySQL连接数限制问题的原因及解决方法。
|
20天前
|
SQL 关系型数据库 MySQL
MySQL进阶突击系列(07) 她气鼓鼓递来一条SQL | 怎么看执行计划、SQL怎么优化?
在日常研发工作当中,系统性能优化,从大的方面来看主要涉及基础平台优化、业务系统性能优化、数据库优化。面对数据库优化,除了DBA在集群性能、服务器调优需要投入精力,我们研发需要负责业务SQL执行优化。当业务数据量达到一定规模后,SQL执行效率可能就会出现瓶颈,影响系统业务响应。掌握如何判断SQL执行慢、以及如何分析SQL执行计划、优化SQL的技能,在工作中解决SQL性能问题显得非常关键。
|
12天前
|
缓存 算法 关系型数据库
MySQL底层概述—8.JOIN排序索引优化
本文主要介绍了MySQL中几种关键的优化技术和概念,包括Join算法原理、IN和EXISTS函数的使用场景、索引排序与额外排序(Using filesort)的区别及优化方法、以及单表和多表查询的索引优化策略。
MySQL底层概述—8.JOIN排序索引优化
|
13天前
|
SQL 关系型数据库 MySQL
MySQL底层概述—7.优化原则及慢查询
本文主要介绍了:Explain概述、Explain详解、索引优化数据准备、索引优化原则详解、慢查询设置与测试、慢查询SQL优化思路
MySQL底层概述—7.优化原则及慢查询
|
16天前
|
SQL 存储 关系型数据库
MySQL原理简介—9.MySQL索引原理
本文详细介绍了MySQL索引的设计与使用原则,涵盖磁盘数据页的存储结构、页分裂机制、主键索引设计及查询过程、聚簇索引和二级索引的原理、B+树索引的维护、联合索引的使用规则、SQL排序和分组时如何利用索引、回表查询对性能的影响以及索引覆盖的概念。此外还讨论了索引设计的案例,包括如何处理where筛选和order by排序之间的冲突、低基数字段的处理方式、范围查询字段的位置安排,以及通过辅助索引来优化特定查询场景。总结了设计索引的原则,如尽量包含where、order by、group by中的字段,选择离散度高的字段作为索引,限制索引数量,并针对频繁查询的低基数字段进行特殊处理等。
MySQL原理简介—9.MySQL索引原理
|
14天前
|
存储 关系型数据库 MySQL
MySQL底层概述—6.索引原理
本文详细回顾了:索引原理、二叉查找树、平衡二叉树(AVL树)、红黑树、B-Tree、B+Tree、Hash索引、聚簇索引与非聚簇索引。
MySQL底层概述—6.索引原理
|
14天前
|
存储 缓存 关系型数据库
MySQL底层概述—5.InnoDB参数优化
本文介绍了MySQL数据库中与内存、日志和IO线程相关的参数优化,旨在提升数据库性能。主要内容包括: 1. 内存相关参数优化:缓冲池内存大小配置、配置多个Buffer Pool实例、Chunk大小配置、InnoDB缓存性能评估、Page管理相关参数、Change Buffer相关参数优化。 2. 日志相关参数优化:日志缓冲区配置、日志文件参数优化。 3. IO线程相关参数优化: 查询缓存参数、脏页刷盘参数、LRU链表参数、脏页刷盘相关参数。
MySQL底层概述—5.InnoDB参数优化
|
5天前
|
监控 关系型数据库 MySQL
MySQL和SQLSugar百万条数据查询分页优化
在面对百万条数据的查询时,优化MySQL和SQLSugar的分页性能是非常重要的。通过合理使用索引、调整查询语句、使用缓存以及采用高效的分页策略,可以显著提高查询效率。本文介绍的技巧和方法,可以为开发人员在数据处理和查询优化中提供有效的指导,提升系统的性能和用户体验。掌握这些技巧后,您可以在处理海量数据时更加游刃有余。
32 9
|
16天前
|
关系型数据库 MySQL 数据库
从MySQL优化到脑力健康:技术人与效率的双重提升
聊到效率这个事,大家应该都挺有感触的吧。 不管是技术优化还是个人状态调整,怎么能更快、更省力地完成事情,都是我们每天要琢磨的事。
59 23
|
3天前
|
关系型数据库 MySQL
图解MySQL【日志】——磁盘 I/O 次数过高时优化的办法
当 MySQL 磁盘 I/O 次数过高时,可通过调整参数优化。控制刷盘时机以降低频率:组提交参数 `binlog_group_commit_sync_delay` 和 `binlog_group_commit_sync_no_delay_count` 调整等待时间和事务数量;`sync_binlog=N` 设置 write 和 fsync 频率,`innodb_flush_log_at_trx_commit=2` 使提交时只写入 Redo Log 文件,由 OS 择机持久化,但两者在 OS 崩溃时有丢失数据风险。
14 3