《R语言数据挖掘》——2.4 序列数据集挖掘

简介:

本节书摘来自华章出版社《R语言数据挖掘》一书中的第2章,第2.4节,作者[哈萨克斯坦]贝特·麦克哈贝尔(Bater Makhabel),李洪成 许金炜 段力辉 译,更多章节内容可以访问云栖社区“华章计算机”公众号查看。

2.4 序列数据集挖掘

序列数据集挖掘的一个重要任务是序列模式挖掘。A-Priori-life算法被用来进行序列模式挖掘,这里使用的A-Priori-life算法,它是采用广度优先策略。然而,FP-growth算法,采用深度优先策略。出于不同的原因,算法有时还需要综合考虑一些约束。

从序列模式中,可以发现商店消费者的常见购买模式。在其他方面,特别是广告或市场营销,序列模式挖掘发挥重要作用。可以从网络日志挖掘、网页推荐系统、生物信息学分析、病历跟踪分析、灾害预防与安全管理等领域中预测个人消费者行为。

本章中的规则都是从序列模式中挖掘出来的,它们具有多种。其中一些类型序列模式如下所示:

序列规则:X→Y,其中XY。

标签序列规则(Label Sequential Rule,LSR):形如X→Y,其中Y是一个序列,X是将序列Y中的若干项用通配符替换后而产生的序列。

类序列规则(Class Sequential Rule,CSR):定义为X,若:
X→y,假设S为序列数据集,I是序列数据集S中所有项的集合,Y是类标签的集合,I∩Y=,X是一个序列且y∈Y。

2.4.1 序列数据集

序列数据集S定义为元组(sid, s)的集合,其中sid为序列ID,s为序列。
在序列数据集S中,序列X的支持度定义为S中包含X的元组数,即
supportS(X)={(sid, s)∨(sid, s)∈S←Xs}

这是序列模式的一个内在性质,它应用于相关的算法,如Apriori算法的Apriori性质。对于序列X及其子序列Y,support(X)≤support(Y)。

2.4.2 GSP算法

广义序列模式(Generalized Sequential Pattern,GSP)算法是一个类似Apriori的算法,但它应用于序列模式。该算法是逐层算法,采取宽度优先策略。它具有如下的特征:

GSP算法是Apriori算法的扩展。它利用Apriori性质(向下封闭),即,给定最小支持计数,若不接受某个序列,则其超序列也将丢弃。

需要对初始事务数据集进行多次扫描。

采用水平数据格式。

每次扫描中,通过将前一次扫描中发现的模式进行自连接来产生候选项集。
在第k次扫描中,仅当在第(k-1)次扫描中接受所有的(k-1)子模式,才接收该序列模式。

GSP算法为:
QQ_20170524174952

伪代码为:
QQ_20170524174956
QQ_20170524175003
QQ_20170524175006

相关文章
|
7月前
|
数据采集 存储 数据可视化
R语言时间序列分析:处理与建模时间序列数据的深度探索
【8月更文挑战第31天】R语言作为一款功能强大的数据分析工具,为处理时间序列数据提供了丰富的函数和包。从数据读取、预处理、建模到可视化,R语言都提供了灵活且强大的解决方案。然而,时间序列数据的处理和分析是一个复杂的过程,需要结合具体的应用场景和需求来选择合适的方法和模型。希望本文能为读者在R语言中进行时间序列分析提供一些有益的参考和启示。
|
7月前
|
SQL 开发框架 大数据
【数据挖掘】顺丰科技2022年秋招大数据挖掘与分析工程师笔试题
顺丰科技2022年秋招大数据挖掘与分析工程师笔试题解析,涵盖了多领域选择题和编程题,包括动态规划、数据库封锁协议、概率论、SQL、排序算法等知识点。
124 0
|
10月前
|
数据可视化 搜索推荐 数据挖掘
数据挖掘实战 —— 抖音用户浏览行为数据分析与挖掘(一)
数据挖掘实战 —— 抖音用户浏览行为数据分析与挖掘(一)
1154 1
|
10月前
|
算法 搜索推荐 数据挖掘
数据挖掘实战 —— 抖音用户浏览行为数据分析与挖掘(续)
数据挖掘实战 —— 抖音用户浏览行为数据分析与挖掘(续)
430 1
|
10月前
|
机器学习/深度学习 数据采集 算法
数据挖掘实战 —— 抖音用户浏览行为数据分析与挖掘(二)
数据挖掘实战 —— 抖音用户浏览行为数据分析与挖掘(二)
464 1
|
10月前
|
机器学习/深度学习 数据挖掘 计算机视觉
R语言中的神经网络预测时间序列:多层感知器(MLP)和极限学习机(ELM)数据分析报告
R语言中的神经网络预测时间序列:多层感知器(MLP)和极限学习机(ELM)数据分析报告
|
10月前
|
数据可视化
数据分享|R语言Copula对债券的流动性风险时间序列数据进行度量
数据分享|R语言Copula对债券的流动性风险时间序列数据进行度量
|
10月前
|
数据采集 数据挖掘 测试技术
python、R语言ARIMA-GARCH分析南方恒生中国企业ETF基金净值时间序列分析
python、R语言ARIMA-GARCH分析南方恒生中国企业ETF基金净值时间序列分析
|
10月前
|
SQL 算法 数据可视化
R语言k-prototype聚类新能源汽车行业上市公司分析混合型数据集(上)
R语言k-prototype聚类新能源汽车行业上市公司分析混合型数据集
|
10月前
|
机器学习/深度学习 Python
【视频】ARIMA时间序列模型原理和R语言ARIMAX预测实现案例
【视频】ARIMA时间序列模型原理和R语言ARIMAX预测实现案例