《R语言数据挖掘》——2.3 混合关联规则挖掘

简介:

本节书摘来自华章出版社《R语言数据挖掘》一书中的第2章,第2.3节,作者[哈萨克斯坦]贝特·麦克哈贝尔(Bater Makhabel),李洪成 许金炜 段力辉 译,更多章节内容可以访问云栖社区“华章计算机”公众号查看。

2.3 混合关联规则挖掘

关联规则挖掘有两个有意义的应用:一是多层次和多维度关联规则挖掘;二是基于约束的关联规则挖掘。

2.3.1 多层次和多维度关联规则挖掘

对于给定的事务数据集,若数据集的某些维度存在概念层次关系,则需要对该数据集进行多层次关联规则挖掘。对事物数据集可用的任何关联规则挖掘算法都可以用于该任务。下表给出亚马逊商店的一个例子。
QQ_20170524173851

下面是多层次模式挖掘的流程图。
QQ_20170524173854

基于概念层次,低层次概念可以投影到高层次概念,具有高层次概念的新数据集可以代替原始的低层次概念。

可以在每个概念层次计算支持计数。许多类Apriori算法在计算支持计数时稍微有些不同。下面是几种不同的方法:

对所有的层次使用统一的最小支持度阈值。

对较低的层次使用较小的支持度阈值。

基于组的最小支持度阈值。

有时,Apriori性质并不总成立。这里有一些例外。

多层次关联规则是从概念层次的多层次中挖掘出来的。

2.3.2 基于约束的频繁模式挖掘

基于约束的频繁模式挖掘是使用用户设定的约束对搜索空间进行剪枝的启发式算法。

常见的约束有(但不局限于)以下几种情况:

知识类型的约束(指定我们想要挖掘什么)

数据约束(对初始数据集的限制)

维度层次约束

兴趣度约束

规则约束

相关文章
|
4月前
|
SQL 开发框架 大数据
【数据挖掘】顺丰科技2022年秋招大数据挖掘与分析工程师笔试题
顺丰科技2022年秋招大数据挖掘与分析工程师笔试题解析,涵盖了多领域选择题和编程题,包括动态规划、数据库封锁协议、概率论、SQL、排序算法等知识点。
99 0
|
7月前
|
数据可视化 搜索推荐 数据挖掘
数据挖掘实战 —— 抖音用户浏览行为数据分析与挖掘(一)
数据挖掘实战 —— 抖音用户浏览行为数据分析与挖掘(一)
|
7月前
|
算法 搜索推荐 数据挖掘
数据挖掘实战 —— 抖音用户浏览行为数据分析与挖掘(续)
数据挖掘实战 —— 抖音用户浏览行为数据分析与挖掘(续)
|
7月前
|
机器学习/深度学习 数据采集 算法
数据挖掘实战 —— 抖音用户浏览行为数据分析与挖掘(二)
数据挖掘实战 —— 抖音用户浏览行为数据分析与挖掘(二)
|
7月前
|
机器学习/深度学习 数据采集 算法
R语言、WEKA关联规则、决策树、聚类、回归分析工业企业创新情况影响因素数据
R语言、WEKA关联规则、决策树、聚类、回归分析工业企业创新情况影响因素数据
|
7月前
|
算法 数据挖掘 数据库
R语言主成分PCA、决策树、boost预警模型在跨区域犯罪研究数据挖掘分析|数据分享
R语言主成分PCA、决策树、boost预警模型在跨区域犯罪研究数据挖掘分析|数据分享
|
7月前
|
数据采集 数据可视化
R语言关联规则Apriori对杭州空气质量与气象因子数据研究可视化
R语言关联规则Apriori对杭州空气质量与气象因子数据研究可视化
|
7月前
|
机器学习/深度学习 算法 数据可视化
R语言改进关联规则挖掘Apriori在超市销售数据可视化
R语言改进关联规则挖掘Apriori在超市销售数据可视化
|
7月前
|
数据可视化 数据挖掘
数据分享|R语言IMDb TOP250电影特征数据挖掘可视化分析受众偏好、排名、投票、评分(下)
数据分享|R语言IMDb TOP250电影特征数据挖掘可视化分析受众偏好、排名、投票、评分

热门文章

最新文章

下一篇
DataWorks