☆打卡算法☆LeetCode 129. 求根节点到叶节点数字之和 算法解析

本文涉及的产品
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: “给定一个二叉树的根节点,计算从根节点到子节点生成的所有数字之和。”

一、题目


1、算法题目

“给定一个二叉树的根节点,计算从根节点到子节点生成的所有数字之和。”

题目链接:

来源:力扣(LeetCode)

链接:  129. 求根节点到叶节点数字之和 - 力扣(LeetCode) (leetcode-cn.com)


2、题目描述

给你一个二叉树的根节点 root ,树中每个节点都存放有一个 0 到 9 之间的数字。 每条从根节点到叶节点的路径都代表一个数字:

例如,从根节点到叶节点的路径 1 -> 2 -> 3 表示数字 123 。 计算从根节点到叶节点生成的 所有数字之和 。

叶节点 是指没有子节点的节点。

网络异常,图片无法展示
|

示例 1:
输入:root = [1,2,3]
输出:25
解释:
从根到叶子节点路径 1->2 代表数字 12
从根到叶子节点路径 1->3 代表数字 13
因此,数字总和 = 12 + 13 = 25
复制代码
示例 2:
输入:root = [4,9,0,5,1]
输出:1026
解释:
从根到叶子节点路径 4->9->5 代表数字 495
从根到叶子节点路径 4->9->1 代表数字 491
从根到叶子节点路径 4->0 代表数字 40
因此,数字总和 = 495 + 491 + 40 = 1026
复制代码


二、解题


1、思路分析

这道题中,二叉树的每个从根节点到子节点的路径都代表一个数字,也就是每个节点对应一个数字。

也就是根节点对应的数字乘上10加上该节点的值。

只要计算出每个子节点对应的数字,然后计算所有子节点对应的数字之和,即可得到结果。

可以使用深度优先搜索算法或广度优先搜索算法实现。

使用深度优先搜索算法是很直观的:

从根节点出发,遇到子节点,则将子节点对应的数字加到数字之和,如果当前节点不是子节点,则计算子节点对应的数字,然后对子节点进行递归遍历。


2、代码实现

代码参考:

class Solution {
    public int sumNumbers(TreeNode root) {
        return dfs(root, 0);
    }
    public int dfs(TreeNode root, int prevSum) {
        if (root == null) {
            return 0;
        }
        int sum = prevSum * 10 + root.val;
        if (root.left == null && root.right == null) {
            return sum;
        } else {
            return dfs(root.left, sum) + dfs(root.right, sum);
        }
    }
}
复制代码

网络异常,图片无法展示
|


3、时间复杂度

时间复杂度:O(n)

其中n是二叉树的节点个数,对每个节点只访问一次。

空间复杂度:O(n)

其中n是二叉树的节点个数,空间复杂度取决于递归调用的栈空间,递归栈的深度等于二叉树的高度,最坏情况下,二叉树的高度等于节点个数,也就是O(n)。


三、总结

这道题还可以使用广度优先搜索算法,维护两个队列,分别储存节点和节点对应的数字。

然后每次从两个队列中取出一个节点和一个节点对应的数字进行操作:

  • 如果当前节点时子节点,则将该数字对应的数字加到数字之和
  • 如果当前节点不是子节点,则计算子节点对应的数字,然后将子节点和子节点对应的数字加入到两个队列中

搜索结束后,即可得到所有子节点对应的数字之和。



相关文章
|
30天前
|
算法 前端开发 数据处理
小白学python-深入解析一位字符判定算法
小白学python-深入解析一位字符判定算法
46 0
|
23天前
|
存储 算法 Java
解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用
在Java中,Set接口以其独特的“无重复”特性脱颖而出。本文通过解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用。
38 3
|
25天前
|
搜索推荐 算法
插入排序算法的平均时间复杂度解析
【10月更文挑战第12天】 插入排序是一种简单直观的排序算法,通过不断将未排序元素插入到已排序部分的合适位置来完成排序。其平均时间复杂度为$O(n^2)$,适用于小规模或部分有序的数据。尽管效率不高,但在特定场景下仍具优势。
|
3天前
|
存储 算法 Java
leetcode算法题-有效的括号(简单)
【11月更文挑战第5天】本文介绍了 LeetCode 上“有效的括号”这道题的解法。题目要求判断一个只包含括号字符的字符串是否有效。有效字符串需满足左括号必须用相同类型的右括号闭合,并且左括号必须以正确的顺序闭合。解题思路是使用栈数据结构,遍历字符串时将左括号压入栈中,遇到右括号时检查栈顶元素是否匹配。最后根据栈是否为空来判断字符串中的括号是否有效。示例代码包括 Python 和 Java 版本。
|
7天前
|
算法 Linux 定位技术
Linux内核中的进程调度算法解析####
【10月更文挑战第29天】 本文深入剖析了Linux操作系统的心脏——内核中至关重要的组成部分之一,即进程调度机制。不同于传统的摘要概述,我们将通过一段引人入胜的故事线来揭开进程调度算法的神秘面纱,展现其背后的精妙设计与复杂逻辑,让读者仿佛跟随一位虚拟的“进程侦探”,一步步探索Linux如何高效、公平地管理众多进程,确保系统资源的最优分配与利用。 ####
32 4
|
8天前
|
缓存 负载均衡 算法
Linux内核中的进程调度算法解析####
本文深入探讨了Linux操作系统核心组件之一——进程调度器,着重分析了其采用的CFS(完全公平调度器)算法。不同于传统摘要对研究背景、方法、结果和结论的概述,本文摘要将直接揭示CFS算法的核心优势及其在现代多核处理器环境下如何实现高效、公平的资源分配,同时简要提及该算法如何优化系统响应时间和吞吐量,为读者快速构建对Linux进程调度机制的认知框架。 ####
|
25天前
|
算法
每日一道算法题(Leetcode 20)
每日一道算法题(Leetcode 20)
21 2
|
1月前
|
机器学习/深度学习 算法 PyTorch
Pytorch-RMSprop算法解析
关注B站【肆十二】,观看更多实战教学视频。本期介绍深度学习中的RMSprop优化算法,通过调整每个参数的学习率来优化模型训练。示例代码使用PyTorch实现,详细解析了RMSprop的参数及其作用。适合初学者了解和实践。
35 1
|
25天前
|
前端开发 算法 JavaScript
无界SaaS模式深度解析:算力算法、链接力、数据确权制度
私域电商的无界SaaS模式涉及后端开发、前端开发、数据库设计、API接口、区块链技术、支付和身份验证系统等多个技术领域。本文通过简化框架和示例代码,指导如何将核心功能转化为技术实现,涵盖用户管理、企业店铺管理、数据流量管理等关键环节。
|
1月前
|
机器学习/深度学习 算法 PyTorch
Pytorch-SGD算法解析
SGD(随机梯度下降)是机器学习中常用的优化算法,特别适用于大数据集和在线学习。与批量梯度下降不同,SGD每次仅使用一个样本来更新模型参数,提高了训练效率。本文介绍了SGD的基本步骤、Python实现及PyTorch中的应用示例。
30 0

推荐镜像

更多
下一篇
无影云桌面