python pandas loc布尔索引(指定条件下的索引)

简介: python pandas loc布尔索引(指定条件下的索引)

pandas loc的指定条件索引(布尔索引)
pandas中的loc不仅仅可以用于直接的标签的索引,也可以用于指定条件的索引。



在这里插入图片描述

1.准备数据

首先准备一组数据:

import pandas as pd
df = pd.DataFrame({
    
    'AAA': [120, 101, 106, 117, 114, 122],
    'BBB': [115, 100, 110, 125, 123, 120],
    'CCC': [109, 112, 125, 120, 116, 115],
    'DDD': 'ABCDEFG'
}, index=[1, 2, 3, 4, 5, 6])
print(df)

在这里插入图片描述

2.单条件筛选

以筛选出其中字段"AAA"大于110的为例:

print(df)
print("=======================")
print(df.loc[df['AAA'] > 110])  # "AAA"大于100的

在这里插入图片描述

深入分析,我们可以看出,loc后传入的是一个Values为bool类型数据的Series,且其长度与原DataFrame的行数相等。

print(df['AAA'] > 110)
print(type(df['AAA'] > 110))  # Series类型,Values为bool类型

在这里插入图片描述

3.多条件筛选

loc也可以同时传入多个筛选条件,
以筛选字段"AAA"大于110且字段"CCC"大于115的数据为例:

print("=======================")
print(df.loc[(df['AAA'] > 110) & (df['CCC'] > 115)])

在这里插入图片描述

目录
相关文章
|
6天前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
23 0
|
8天前
|
数据采集 数据可视化 数据处理
如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`)
本文介绍了如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`),加载历史数据,计算均线和其他技术指标,实现交易逻辑,记录和可视化交易结果。示例代码展示了如何根据均线交叉和价格条件进行开仓、止损和止盈操作。实际应用时需注意数据质量、交易成本和风险管理。
27 5
|
7天前
|
存储 数据挖掘 数据处理
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第26天】Python 是数据分析领域的热门语言,Pandas 库以其高效的数据处理功能成为数据科学家的利器。本文介绍 Pandas 在数据读取、筛选、分组、转换和合并等方面的高效技巧,并通过示例代码展示其实际应用。
19 1
|
28天前
|
机器学习/深度学习 数据采集 算法
探索Python科学计算的边界:NumPy、Pandas与SciPy在大规模数据分析中的高级应用
【10月更文挑战第5天】随着数据科学和机器学习领域的快速发展,处理大规模数据集的能力变得至关重要。Python凭借其强大的生态系统,尤其是NumPy、Pandas和SciPy等库的支持,在这个领域占据了重要地位。本文将深入探讨这些库如何帮助科学家和工程师高效地进行数据分析,并通过实际案例来展示它们的一些高级应用。
42 0
探索Python科学计算的边界:NumPy、Pandas与SciPy在大规模数据分析中的高级应用
|
1月前
|
机器学习/深度学习 并行计算 大数据
【Python篇】深入挖掘 Pandas:机器学习数据处理的高级技巧
【Python篇】深入挖掘 Pandas:机器学习数据处理的高级技巧
54 3
|
1月前
|
数据采集 数据挖掘 大数据
【Python篇】详细学习 pandas 和 xlrd:从零开始
【Python篇】详细学习 pandas 和 xlrd:从零开始
53 2
|
30天前
|
数据采集 数据可视化 数据挖掘
Python 数据分析实战:使用 Pandas 进行数据清洗与可视化
【10月更文挑战第3天】Python 数据分析实战:使用 Pandas 进行数据清洗与可视化
72 0
|
6月前
|
程序员 Python
Python控制结构:条件语句和循环详解
【4月更文挑战第8天】本文介绍了Python的两种主要控制结构——条件语句和循环。条件语句包括`if`、`elif`和`else`,用于根据条件执行不同代码块。`if`检查条件,`else`提供替代路径,`elif`用于多个条件检查。循环结构有`for`和`while`,前者常用于遍历序列,后者在满足特定条件时持续执行。`for`可结合`range()`生成数字序列。`while`循环适用于未知循环次数的情况。循环控制语句`break`和`continue`能改变循环执行流程。理解和熟练运用这些控制结构是Python编程的基础。
88 4
|
6月前
|
Java 程序员 C++
Python教程第4章 | 条件语句、循环语句和函数
Python if条件语句,for循环语句、Python函数
125 1
Python教程第4章 | 条件语句、循环语句和函数
|
6月前
|
数据挖掘 Java 编译器
python基础语法——条件语句和循环语句
本文基于pycharm编译器,也可以使用Anaconda 里的编译器,将讲解一些python的一些基础语法知识,是对上篇文章的补充,可以和我写的python数据分析——Python语言基础(数据结构基础)结合起来看,有些知识点可能在这篇文章写的不是很全面。
68 0