python机器学习classification_report()函数 输出模型评估报告

简介: python机器学习classification_report()函数 输出模型评估报告

classification_report()是python在机器学习中常用的输出模型评估报告的方法。

classification_report()函数介绍

classification_report()语法如下:

classification_report(
         y_true,
         y_pred,
         labels=None,
         target_names=None,
         sample_weight=None,
         digits=2,
         output_dict=False,
         zero_division=“warn”
)

参数 描述
y_true 真实值 ,一维数组形式(也可以是列表元组之类的)
y_pred 预测值,一维数组形式(也可以是列表元组之类的)
labels 标签索引列表,可选参数,数组形式
target_names 与标签匹配的名称,可选参数,数组形式
sample_weight 样本权重,数组形式
digits 格式化输出浮点值的位数。默认为2。当“output_dict”为“True”时,这将被忽略,并且返回的值不会四舍五入。
output_dict 是否输出字典。默认为False,如果为True则输出结果形式为字典。
zero_division 设置存在零除法时返回的值。默认为warn。如果设置为“warn”,这相当于0,但也会引发警告。

使用示例

from sklearn.metrics import classification_report

# 测试集真实数据
y_test = [1, 2, 3, 1, 2, 3, 1, 2, 3]
# 预测结果
y_predicted = [1, 2, 3, 3, 2, 1, 3, 2, 3]

以这两行数据为例,不难直接看出,
预测中预测了

  • 2次1标签,成功1次,1标签预测的准确率率为0.5
  • 3次2标签,成功3次,2标签预测的准确率为1.0
  • 4次3标签,成功2次,3标签预测的准确率为0.5
print(classification_report(y_test, y_predicted))

在这里插入图片描述

也可以加上target_names参数,效果如下:

print(classification_report(y_test, y_predicted, target_names=['a类', 'b类', 'c类']))

如图左边显示出了新传入的标签名。
在这里插入图片描述


输出分析

由图可见,precisoin即准确率,也称查准率
recall是召回率 ,也称查全率
f1-score简称F1

对于其中一个标签预测结果进行评估,引入以下概念:

名称 简写 通俗描述
真正例 TP 预测结果是该标签,实际是该标签的样例个数
假正例 FP 预测结果是该标签,实际不是该标签的样例个数
假反例 FN 预测结果不是该标签,实际是该标签的样例个数
真反例 TN 预测结果不是该标签,实际是该标签的样例个数

其中, 满足TP+FP+FN+TN=样例总数

查准率的定义公式为
在这里插入图片描述

可以描述为 预测结果是该标签的样例中,实际是该标签的所占比。

查全率的定义公式为


在这里插入图片描述

可以描述为 实际是该标签的样例中,预测结果是该标签的所占比。


以该例的标签’3’为例,
‘3’标签预测了4次,成功了2次,则查准率


在这里插入图片描述

所有标签一共预测了9次,其中3标签预测了4次,则其它标签预测了5次,这五次中有1次是3标签,即FN=1则查全率为:
在这里插入图片描述

查准率和查全率是一对矛盾的度量,一般来说,查准率高时,查全率往往会偏低,查全率高时,查准率往往会偏低。通常只可能在一些简单任务中,才可能使查准率和查全率都很高。

此时结合名字,不难看出:查全率,是在衡量关于某标签的预测结果涵盖的是否“周全”,查全率高意味着,即某个标签预测得准确率不一定高,但是其真实值会大量存在于或者被包含于预测值中。


f1-score也称F1,


在这里插入图片描述

F1是基于查准率查重率 的调和平均定义的:


在这里插入图片描述

accruracy 整体的准确率 即正确预测样本量与总样本量的比值。(不是针对某个标签的预测的正确率)

macro avg 即宏均值,可理解为普通的平均值。
macro-P 宏查准率
macro-R 宏查全率
macro-F1 宏F1

对应的概念还有 微均值 micro avg
在这里插入图片描述
公式经过等价转换,分子分母同时乘以标签个数,micro-P等价于所有类别中预测正确量与总样本量的比值。
micro-R 同理,即所有类别中预测正确的量占该标签实际数量的比例

目录
相关文章
|
5天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
21 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
8天前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
18 2
|
9天前
|
机器学习/深度学习 数据采集 搜索推荐
利用Python和机器学习构建电影推荐系统
利用Python和机器学习构建电影推荐系统
25 1
|
9天前
|
机器学习/深度学习 算法 PyTorch
用Python实现简单机器学习模型:以鸢尾花数据集为例
用Python实现简单机器学习模型:以鸢尾花数据集为例
29 1
|
16天前
|
机器学习/深度学习 数据采集 算法
Python机器学习:Scikit-learn库的高效使用技巧
【10月更文挑战第28天】Scikit-learn 是 Python 中最受欢迎的机器学习库之一,以其简洁的 API、丰富的算法和良好的文档支持而受到开发者喜爱。本文介绍了 Scikit-learn 的高效使用技巧,包括数据预处理(如使用 Pipeline 和 ColumnTransformer)、模型选择与评估(如交叉验证和 GridSearchCV)以及模型持久化(如使用 joblib)。通过这些技巧,你可以在机器学习项目中事半功倍。
21 3
|
5天前
|
机器学习/深度学习 人工智能 TensorFlow
人工智能浪潮下的自我修养:从Python编程入门到深度学习实践
【10月更文挑战第39天】本文旨在为初学者提供一条清晰的道路,从Python基础语法的掌握到深度学习领域的探索。我们将通过简明扼要的语言和实际代码示例,引导读者逐步构建起对人工智能技术的理解和应用能力。文章不仅涵盖Python编程的基础,还将深入探讨深度学习的核心概念、工具和实战技巧,帮助读者在AI的浪潮中找到自己的位置。
|
5天前
|
机器学习/深度学习 数据挖掘 Python
Python编程入门——从零开始构建你的第一个程序
【10月更文挑战第39天】本文将带你走进Python的世界,通过简单易懂的语言和实际的代码示例,让你快速掌握Python的基础语法。无论你是编程新手还是想学习新语言的老手,这篇文章都能为你提供有价值的信息。我们将从变量、数据类型、控制结构等基本概念入手,逐步过渡到函数、模块等高级特性,最后通过一个综合示例来巩固所学知识。让我们一起开启Python编程之旅吧!
|
5天前
|
存储 Python
Python编程入门:打造你的第一个程序
【10月更文挑战第39天】在数字时代的浪潮中,掌握编程技能如同掌握了一门新时代的语言。本文将引导你步入Python编程的奇妙世界,从零基础出发,一步步构建你的第一个程序。我们将探索编程的基本概念,通过简单示例理解变量、数据类型和控制结构,最终实现一个简单的猜数字游戏。这不仅是一段代码的旅程,更是逻辑思维和问题解决能力的锻炼之旅。准备好了吗?让我们开始吧!
|
7天前
|
设计模式 算法 搜索推荐
Python编程中的设计模式:优雅解决复杂问题的钥匙####
本文将探讨Python编程中几种核心设计模式的应用实例与优势,不涉及具体代码示例,而是聚焦于每种模式背后的设计理念、适用场景及其如何促进代码的可维护性和扩展性。通过理解这些设计模式,开发者可以更加高效地构建软件系统,实现代码复用,提升项目质量。 ####

热门文章

最新文章