python机器学习classification_report()函数 输出模型评估报告

简介: python机器学习classification_report()函数 输出模型评估报告

classification_report()是python在机器学习中常用的输出模型评估报告的方法。

classification_report()函数介绍

classification_report()语法如下:

classification_report(
         y_true,
         y_pred,
         labels=None,
         target_names=None,
         sample_weight=None,
         digits=2,
         output_dict=False,
         zero_division=“warn”
)

参数 描述
y_true 真实值 ,一维数组形式(也可以是列表元组之类的)
y_pred 预测值,一维数组形式(也可以是列表元组之类的)
labels 标签索引列表,可选参数,数组形式
target_names 与标签匹配的名称,可选参数,数组形式
sample_weight 样本权重,数组形式
digits 格式化输出浮点值的位数。默认为2。当“output_dict”为“True”时,这将被忽略,并且返回的值不会四舍五入。
output_dict 是否输出字典。默认为False,如果为True则输出结果形式为字典。
zero_division 设置存在零除法时返回的值。默认为warn。如果设置为“warn”,这相当于0,但也会引发警告。

使用示例

from sklearn.metrics import classification_report

# 测试集真实数据
y_test = [1, 2, 3, 1, 2, 3, 1, 2, 3]
# 预测结果
y_predicted = [1, 2, 3, 3, 2, 1, 3, 2, 3]

以这两行数据为例,不难直接看出,
预测中预测了

  • 2次1标签,成功1次,1标签预测的准确率率为0.5
  • 3次2标签,成功3次,2标签预测的准确率为1.0
  • 4次3标签,成功2次,3标签预测的准确率为0.5
print(classification_report(y_test, y_predicted))

在这里插入图片描述

也可以加上target_names参数,效果如下:

print(classification_report(y_test, y_predicted, target_names=['a类', 'b类', 'c类']))

如图左边显示出了新传入的标签名。
在这里插入图片描述


输出分析

由图可见,precisoin即准确率,也称查准率
recall是召回率 ,也称查全率
f1-score简称F1

对于其中一个标签预测结果进行评估,引入以下概念:

名称 简写 通俗描述
真正例 TP 预测结果是该标签,实际是该标签的样例个数
假正例 FP 预测结果是该标签,实际不是该标签的样例个数
假反例 FN 预测结果不是该标签,实际是该标签的样例个数
真反例 TN 预测结果不是该标签,实际是该标签的样例个数

其中, 满足TP+FP+FN+TN=样例总数

查准率的定义公式为
在这里插入图片描述

可以描述为 预测结果是该标签的样例中,实际是该标签的所占比。

查全率的定义公式为


在这里插入图片描述

可以描述为 实际是该标签的样例中,预测结果是该标签的所占比。


以该例的标签’3’为例,
‘3’标签预测了4次,成功了2次,则查准率


在这里插入图片描述

所有标签一共预测了9次,其中3标签预测了4次,则其它标签预测了5次,这五次中有1次是3标签,即FN=1则查全率为:
在这里插入图片描述

查准率和查全率是一对矛盾的度量,一般来说,查准率高时,查全率往往会偏低,查全率高时,查准率往往会偏低。通常只可能在一些简单任务中,才可能使查准率和查全率都很高。

此时结合名字,不难看出:查全率,是在衡量关于某标签的预测结果涵盖的是否“周全”,查全率高意味着,即某个标签预测得准确率不一定高,但是其真实值会大量存在于或者被包含于预测值中。


f1-score也称F1,


在这里插入图片描述

F1是基于查准率查重率 的调和平均定义的:


在这里插入图片描述

accruracy 整体的准确率 即正确预测样本量与总样本量的比值。(不是针对某个标签的预测的正确率)

macro avg 即宏均值,可理解为普通的平均值。
macro-P 宏查准率
macro-R 宏查全率
macro-F1 宏F1

对应的概念还有 微均值 micro avg
在这里插入图片描述
公式经过等价转换,分子分母同时乘以标签个数,micro-P等价于所有类别中预测正确量与总样本量的比值。
micro-R 同理,即所有类别中预测正确的量占该标签实际数量的比例

目录
相关文章
|
7天前
|
机器学习/深度学习 算法 Python
介绍文本分类的基本概念、常用方法以及如何在Python中使用机器学习库进行文本分类
【6月更文挑战第13天】文本分类是机器学习在数字化时代的关键应用,涉及文本预处理、特征提取和模型训练等步骤。常见方法包括基于规则、关键词和机器学习,其中机器学习(如朴素贝叶斯、SVM、深度学习)是主流。在Python中,可使用scikit-learn进行文本分类,例如通过TF-IDF和朴素贝叶斯对新闻数据集进行处理和预测。随着技术发展,未来将深入探索深度学习和多模态数据在文本分类中的应用。
24 2
|
7天前
|
搜索推荐 算法 UED
基于Python的推荐系统算法实现与评估
本文介绍了推荐系统的基本概念和主流算法,包括基于内容的推荐、协同过滤以及混合推荐。通过Python代码示例展示了如何实现基于内容的推荐和简化版用户-用户协同过滤,并讨论了推荐系统性能评估指标,如预测精度和覆盖率。文章强调推荐系统设计的迭代优化过程,指出实际应用中需考虑数据稀疏性、冷启动等问题。【6月更文挑战第11天】
43 3
|
9天前
|
机器学习/深度学习 人工智能 PyTorch
人工智能平台PAI产品使用合集之只进行训练(train)而不进行评估(eval)该如何配置
阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。
|
18天前
|
机器学习/深度学习 数据采集 Python
机器学习模型的评估与选择标准
【6月更文挑战第1天】机器学习模型的评估至关重要,包括准确率、召回率、F1值和均方误差等指标。准确率衡量预测正确比例,召回率关注找出所有相关样本的能力,F1值是两者的综合。泛化能力同样重要,防止过拟合和欠拟合。不同场景可能侧重不同指标,如医疗诊断更关注召回率。选择模型需综合考虑多个因素,以实现最佳性能。通过实践和探索,我们可以更好地理解和优化模型评估,推动机器学习进步。
39 2
|
22天前
|
机器学习/深度学习 数据采集 算法
深度解析Python中的机器学习库:Scikit-learn
深度解析Python中的机器学习库:Scikit-learn
24 0
|
1月前
|
机器学习/深度学习 数据采集 自然语言处理
图像分类模型评估之用python绘制混淆矩阵confusion_matrix_python confusion_matrix
图像分类模型评估之用python绘制混淆矩阵confusion_matrix_python confusion_matrix
|
1月前
|
机器学习/深度学习 BI
机器学习模型评估指标总结
机器学习模型评估指标总结
20 2
|
1月前
|
机器学习/深度学习 数据可视化 前端开发
【Python机器学习专栏】机器学习模型评估的实用方法
【4月更文挑战第30天】本文介绍了机器学习模型评估的关键方法,包括评估指标(如准确率、精确率、召回率、F1分数、MSE、RMSE、MAE及ROC曲线)和交叉验证技术(如K折交叉验证、留一交叉验证、自助法)。混淆矩阵提供了一种可视化分类模型性能的方式,而Python的scikit-learn库则方便实现这些评估。选择适合的指标和验证方法能有效优化模型性能。
|
1月前
|
算法 数据挖掘 Python
Python贝叶斯MCMC:Metropolis-Hastings、Gibbs抽样、分层模型、收敛性评估
Python贝叶斯MCMC:Metropolis-Hastings、Gibbs抽样、分层模型、收敛性评估
|
1月前
|
机器学习/深度学习 算法 数据可视化
Python用KNN(K-近邻)回归、分类、异常值检测预测房价、最优K值选取、误差评估可视化
Python用KNN(K-近邻)回归、分类、异常值检测预测房价、最优K值选取、误差评估可视化