实战限流(guava的RateLimiter)

简介: guava的RateLimiter使用的是令牌桶算法,也就是以固定的频率向桶中放入令牌,本文实战一下RateLimiter的用法

欢迎访问我的GitHub

这里分类和汇总了欣宸的全部原创(含配套源码): https://github.com/zq2599/blog_demos

关于限流

  • 常用的限流算法有漏桶算法和令牌桶算法,guava的RateLimiter使用的是令牌桶算法,也就是以固定的频率向桶中放入令牌,例如一秒钟10枚令牌,实际业务在每次响应请求之前都从桶中获取令牌,只有取到令牌的请求才会被成功响应,获取的方式有两种:阻塞等待令牌或者取不到立即返回失败,下图来自网上:

这里写图片描述

  • 本次实战,我们用的是guava的RateLimiter,场景是spring mvc在处理请求时候,从桶中申请令牌,申请到了就成功响应,申请不到时直接返回失败;
  • 对于的源码可以在我的git下载,地址是:https://github.com/zq2599/blog_demos,里面有多个工程,本次实战的工程为guavalimitdemo,如下图红框所示:

这里写图片描述

  • 这是一个maven工程,所以首先我们在pom中把guava的依赖添加进来:
<dependency>
      <groupId>com.google.guava</groupId>
      <artifactId>guava</artifactId>
      <version>18.0</version>
    </dependency>
  • 把限流服务封装到一个类中AccessLimitService,提供tryAcquire()方法,用来尝试获取令牌,返回true表示获取到,如下所示:
@Service
public class AccessLimitService {

    //每秒只发出5个令牌
    RateLimiter rateLimiter = RateLimiter.create(5.0);

    /**
     * 尝试获取令牌
     * @return
     */
    public boolean tryAcquire(){
        return rateLimiter.tryAcquire();
    }
}
  • 调用方是个普通的controller,每次收到请求的时候都尝试去获取令牌,获取成功和失败打印不同的信息,如下:
@Controller
public class HelloController {

    private static SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");

    @Autowired
    private AccessLimitService accessLimitService;

    @RequestMapping("/access")
    @ResponseBody
    public String access(){
        //尝试获取令牌
        if(accessLimitService.tryAcquire()){
            //模拟业务执行500毫秒
            try {
                Thread.sleep(500);
            }catch (InterruptedException e){
                e.printStackTrace();
            }
            return "aceess success [" + sdf.format(new Date()) + "]";
        }else{
            return "aceess limit [" + sdf.format(new Date()) + "]";
        }
    }
}
  • 以上就是服务端的代码了,打包部署在tomcat上即可,接下来我们写一个类,十个线程并发访问上面写的controller:
public class AccessClient {
    ExecutorService fixedThreadPool = Executors.newFixedThreadPool(10);

    /**
     * get请求
     * @param realUrl
     * @return
     */
    public static String sendGet(URL realUrl) {
        String result = "";
        BufferedReader in = null;
        try {
            // 打开和URL之间的连接
            URLConnection connection = realUrl.openConnection();
            // 设置通用的请求属性
            connection.setRequestProperty("accept", "*/*");
            connection.setRequestProperty("connection", "Keep-Alive");
            connection.setRequestProperty("user-agent",
                    "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1;SV1)");
            // 建立实际的连接
            connection.connect();

            // 定义 BufferedReader输入流来读取URL的响应
            in = new BufferedReader(new InputStreamReader(
                    connection.getInputStream()));
            String line;
            while ((line = in.readLine()) != null) {
                result += line;
            }
        } catch (Exception e) {
            System.out.println("发送GET请求出现异常!" + e);
            e.printStackTrace();
        }
        // 使用finally块来关闭输入流
        finally {
            try {
                if (in != null) {
                    in.close();
                }
            } catch (Exception e2) {
                e2.printStackTrace();
            }
        }
        return result;
    }



    public void access() throws Exception{
        final URL url = new URL("http://localhost:8080/guavalimitdemo/access");

        for(int i=0;i<10;i++) {
            fixedThreadPool.submit(new Runnable() {
                public void run() {
                    System.out.println(sendGet(url));
                }
            });
        }

        fixedThreadPool.shutdown();
        fixedThreadPool.awaitTermination(Long.MAX_VALUE, TimeUnit.SECONDS);
    }

    public static void main(String[] args) throws Exception{
        AccessClient accessClient = new AccessClient();
        accessClient.access();
    }
}
  • 直接执行AccessClient的main方法,可以看到结果如下:

这里写图片描述

  • 部分请求由于获取的令牌可以成功执行,其余请求没有拿到令牌,我们可以根据实际业务来做区分处理。还有一点要注意,我们通过RateLimiter.create(5.0)配置的是每一秒5枚令牌,但是限流的时候发出的是6枚,改用其他值验证,也是实际的比配置的大1。
  • 以上就是快速实现限流的实战过程,此处仅是单进程服务的限流,而实际的分布式服务中会考虑更多因素,会复杂很多。

欢迎关注阿里云开发者社区博客:程序员欣宸

学习路上,你不孤单,欣宸原创一路相伴...
相关文章
|
6月前
重试工具Guava-Retryer
使用Guava Retrying库进行重试机制的示例:首先在项目中引入依赖,然后通过RetryerBuilder创建Retryer实例,设置重试条件(如:结果为null或出现特定异常),并配置停止策略和等待策略。代码示例展示了当模拟操作失败一定次数后,最终成功执行的情况。Guava Retrying提供多种重试条件,如基于异常或自定义断言,并支持配置重试次数和间隔时间。
119 5
|
6月前
|
NoSQL fastjson Redis
自定义限流注解@RateLimiter
自定义限流注解@RateLimiter
147 2
|
存储 缓存 算法
Google Guava之RateLimiter
在日常开发中,限流是高并发系统的三把守护利器之一,它的另外两个好兄弟缓存、降级下次再说。而限流在绝大多数场景中用来限制并发和请求量,像秒杀之类的高流量业务的场景,都能见到它的身影,所以它就是保护系统和下游的业务系统不被流量冲垮的利器。
305 6
Google Guava之RateLimiter
|
4月前
|
监控 算法 Java
详解 Java 限流接口实现问题之避免令牌桶限流算法可能导致的过载问题如何解决
详解 Java 限流接口实现问题之避免令牌桶限流算法可能导致的过载问题如何解决
|
5月前
|
监控 安全 算法
提升编程效率的利器: 解析Google Guava库之RateLimiter优雅限流(十)
提升编程效率的利器: 解析Google Guava库之RateLimiter优雅限流(十)
|
6月前
|
Java Maven
Guava RateLimiter单机实战指南
Guava RateLimiter单机实战指南
49 0
|
缓存 算法 API
【如何】guava的RateLimiter使用
【如何】guava的RateLimiter使用
98 0
|
Java
SpringBoot整合RateLimiter实现限流
写作缘由 在和某学长炫耀在自己会用Redis+Lua实现滑动窗口限流时,他说现在都用RateLimiter,所以就我就想搞个Demo,但是度娘了一下,感觉我搜索到的博客有几个个人认为不太完善的地方,比如只贴了部分代码,没贴依赖。尤其是你用AOP实现的时候,其实依赖哪个还有有讲究的;还有一个问题就是大多都是基于AOP实现,拦截器实现也是一个不错的方式,所以此处用拦截器HandlerInterceptorAdapter实现。
325 0
|
存储 算法 NoSQL
RateLimiter源码分析
RateLimiter源码分析
155 0
RateLimiter源码分析
|
算法 Java
【Java技术开发专题】系列之「Guava RateLimiter」针对于限流器的入门到实战(含源码分析介绍)
【Java技术开发专题】系列之「Guava RateLimiter」针对于限流器的入门到实战(含源码分析介绍)
237 0
【Java技术开发专题】系列之「Guava RateLimiter」针对于限流器的入门到实战(含源码分析介绍)