大数据时代下的App数据隐私安全

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: 随着信息技术快速发展,大数据为我们带来信息共享、便捷生活的同时,还存在着数据安全问题,主流商业模式下APP面临新的挑战。工信部持续开展APP侵权整治活动,进行了了六批次集中抽检,检查了76万款APP,通报748款违规APP,下架了245款拒不整改的APP。阿里云移动研发平台EMAS高度重视个人信息的保护,对设备权限获取遵循最小化原则,为用户构筑隐私保护的坚实防线。

App数据安全,主流商业模式下的新挑战


近年来随着信息技术快速发展,大数据时代已经来临。大数据为我们带来信息共享、便捷生活的同时,还存在着数据安全问题。


目前不少公司依托于推送等采集数据工具沉淀用户原始数据,通过上层数据服务变现,其作为一种商业模式为App业务引入了巨大的数据隐私风险。例如在某推送服务提供的《开发者协议》中,服务商明确要求App开发者《隐私政策》中须告知其App用户主体同意SDK提供者收集并使用其个人信息。其中可能包括:

1、设备信息,设备信息包括:设备标识符(IMEIIDFAAndroid IDMACOAIDIMSI等相关信息)

2、应用信息(应用崩溃信息、通知开关状态、软件列表等相关信息)

3、设备参数及系统信息(设备类型、设备型号、操作系统及硬件相关信息)

4、网络信息,网络信息包括:IP地址,WiFi信息,基站信息等相关信息。

5、地理位置信息。

个人信息是现行法律重点保护的数据类型。

 

此外,目前在手机APP的使用过程中打开某个APP,能连带打开好几个别的App的情况层出不穷,这种自动操作引发用户对手机里信息被盗取的担忧,事实上究其原因是App为了保证被用户继续使用,就要尽可能多的刷存在感,否则久而久之用户就会弃之不用,甚至卸载。如果App开发者选择了采用联合唤醒的机制或者其他类似机制来保活,这就可能导致大量的服务进程在后台被唤醒、驻留,从而造成不同应用之间的交叉唤醒、关联启动的现象。


基于上述技术规范内容分析,App通过自启动、关联启动等方式唤醒后,如果存在通过权限等机制收集个人信息的行为,且并未在隐私政策等规则中明确指出具体的目的的,其收集个人信息的频度则涉嫌超出了业务功能实际需要。而在我国的《App违法违规收集使用个人信息行为认定方法》第四条第3点指出,收集个人信息的频度等超出业务功能实际需要,可认定为违反必要原则,收集与其提供的服务无关的个人信息

 

数据显示,近年来工信部持续开展APP侵权整治活动,开展了六批次集中抽检,检查了76万款APP,通报748款违规APP,下架了245款拒不整改的APP。在南方都市报发表于20201127日的文章中点击查看可以看出目前存在的问题。

 

基于上述问题,为了保障App业务的隐私合规安全,阿里云移动研发平台EMAS近期上线了隐私合规检测专项服务,对移动App隐私安全、个人数据收集和使用进行合规分析。服务提供了全面的隐私合规检测报告和专家建议,从确保形式合规(隐私政策文本合规性)及实质合规(代码层合规性)的一致性,从个人信息收集、权限使用场景、隐私政策等多个维度帮助企业和开发者提前识别App隐私合规相关风险,规避监管通报、应用下架等重大风险。

形式合规:从重知识重人力转为自动检测

监管检查的一大重点是隐私政策协议文本是否按照要求进行了声明。传统的隐私政策由法务编写、检查,对法务专业知识要求较高,并且需专人跟踪监管动态和相关规章,对开发者来说投入比较大。

EMAS形式合规检测基于现行法律法规、标准、部门规章和监管动态等,总结了若干检测点。同时。基于小样本学习、信息抽取、文本分类等AI技术,可对隐私协议文本进行细粒度解析,能精准定位到包括不限于隐私数据采集、存储、第三方SDK使用等描述性信息。

在此基础上,依托于自建的合规知识图谱+智能合规分析引擎,自动化、标准化产出形式合规监测点的检测结果,最大限度地降低人力和时间成本。

实质合规:黑盒App的代码检测

合规检测的另一个问题是,我们如何判断实际运行的采集行为与隐私政策声明一致。EMAS合规检测产品服务底层集成的隐私合规检测引擎基于控制流、数据流、污点分析、动态沙箱等动静态分析技术,深度融合隐私专家经验,提供了准确的代码层实质合规检测能力。

实质合规关注敏感权限调用、数据采集、数据传输、数据存储等APP实际数据使用行为,通过静态分析和动态分析两种分析引擎,基于抽象语法树、控制流图、数据流图,刻画App代码控制链路和数据流转链路,结合真机预览及模拟点击的动态分析结果,产出具体的实质合规检测点检测结果,包括敏感数据泄露、超范围采集、弹窗打扰等。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
2月前
|
存储 分布式计算 数据挖掘
数据架构 ODPS 是什么?
数据架构 ODPS 是什么?
426 7
|
2月前
|
存储 分布式计算 大数据
大数据 优化数据读取
【11月更文挑战第4天】
58 2
|
2月前
|
数据采集 监控 数据管理
数据治理之道:大数据平台的搭建与数据质量管理
【10月更文挑战第26天】随着信息技术的发展,数据成为企业核心资源。本文探讨大数据平台的搭建与数据质量管理,包括选择合适架构、数据处理与分析能力、数据质量标准与监控机制、数据清洗与校验及元数据管理,为企业数据治理提供参考。
98 1
|
2月前
|
机器学习/深度学习 存储 大数据
在大数据时代,高维数据处理成为难题,主成分分析(PCA)作为一种有效的数据降维技术,通过线性变换将数据投影到新的坐标系
在大数据时代,高维数据处理成为难题,主成分分析(PCA)作为一种有效的数据降维技术,通过线性变换将数据投影到新的坐标系,保留最大方差信息,实现数据压缩、去噪及可视化。本文详解PCA原理、步骤及其Python实现,探讨其在图像压缩、特征提取等领域的应用,并指出使用时的注意事项,旨在帮助读者掌握这一强大工具。
92 4
|
2月前
|
存储 大数据 数据管理
大数据分区简化数据维护
大数据分区简化数据维护
26 4
|
2月前
|
存储 大数据 定位技术
大数据 数据索引技术
【10月更文挑战第26天】
64 3
|
2月前
|
存储 大数据 OLAP
大数据数据分区技术
【10月更文挑战第26天】
81 2
|
2月前
|
消息中间件 分布式计算 大数据
数据为王:大数据处理与分析技术在企业决策中的力量
【10月更文挑战第29天】在信息爆炸的时代,大数据处理与分析技术为企业提供了前所未有的洞察力和决策支持。本文探讨了大数据技术在企业决策中的重要性和实际应用,包括数据的力量、实时分析、数据驱动的决策以及数据安全与隐私保护。通过这些技术,企业能够从海量数据中提取有价值的信息,预测市场趋势,优化业务流程,从而在竞争中占据优势。
164 2
|
2月前
|
数据采集 分布式计算 大数据
数据治理之道:大数据平台的搭建与数据质量管理
【10月更文挑战第27天】在数字化时代,数据治理对于确保数据资产的保值增值至关重要。本文探讨了大数据平台的搭建和数据质量管理的重要性及实践方法。大数据平台应包括数据存储、处理、分析和展示等功能,常用工具如Hadoop、Apache Spark和Flink。数据质量管理则涉及数据的准确性、一致性和完整性,通过建立数据质量评估和监控体系,确保数据分析结果的可靠性。企业应设立数据治理委员会,投资相关工具和技术,提升数据治理的效率和效果。
135 2
|
2月前
|
存储 安全 大数据