神经网络与深度学习---验证集(测试集)准确率高于训练集准确率的原因

简介: 神经网络与深度学习---验证集(测试集)准确率高于训练集准确率的原因

1.数据集太小,这样会导致数据集切分的时候不均匀,也就是说训练集和测试集的分布不均匀,如果模型能够正确地捕捉到数据内部的分布模式的话,就有可能造成训练集的内部方差大于验证集,会造成训练集的误差更大,这个时候就需要重新划分数据集,使其分布一样。

2.模型正则化过多,比如训练时dropout过多,和验证时的模型相差较大,验证时是不会有dropout的。

Dropout能基本上确保测试集的准确性最好,优于训练集的准确性。Dropout迫使神经网络成为一个非常大的弱分类器集合,这就意味着,一个单独的分类器没有太高的分类准确性,只有当把他们串在一起的时候他们才会变得更强大。

而且在训练期间,Dropout将这些分类器的随机集合切掉,因此,训练准确率将受到影响;在测试期间,Dropout将自动关闭,并允许使用神经网络中的所有弱分类器,因此,测试精度提高。

3.训练集的准确率是每个batch之后产生的,而验证集的准确率一般是一个epoch后产生的,验证时的模型是训练一个个batch之后的,有一个滞后性,可以说就是用训练得差不多的模型用来验证,当然准确率要高一点。

4.训练集的数据做了一系列的预处理,如旋转、仿射、模糊、添加噪点等操作,过多的预处理导致训练集的分布产生了变化,所以使得训练集的准确率低于验证集

相关文章
|
2天前
|
机器学习/深度学习 算法 TensorFlow
TensorFlow 2keras开发深度学习模型实例:多层感知器(MLP),卷积神经网络(CNN)和递归神经网络(RNN)
TensorFlow 2keras开发深度学习模型实例:多层感知器(MLP),卷积神经网络(CNN)和递归神经网络(RNN)
|
2天前
|
机器学习/深度学习 算法 数据可视化
MATLAB基于深度学习U-net神经网络模型的能谱CT的基物质分解技术研究
MATLAB基于深度学习U-net神经网络模型的能谱CT的基物质分解技术研究
|
2天前
|
机器学习/深度学习 Python
【深度学习入门】- 神经网络
【深度学习入门】- 神经网络
|
6天前
|
算法 计算机视觉 异构计算
基于FPGA的图像累积直方图verilog实现,包含tb测试文件和MATLAB辅助验证
该内容展示了FPGA实现图像累积直方图的算法。使用Vivado2019.2和matlab2022a,通过FPGA的并行处理能力优化图像处理。算法基于像素值累加分布,计算图像中像素值小于等于特定值的像素个数。核心代码为`test_image`模块,读取二进制图像文件并传递给`im_hist`单元,生成直方图和累积直方图。
|
8天前
|
机器学习/深度学习 传感器 数据可视化
MATLAB用深度学习长短期记忆 (LSTM) 神经网络对智能手机传感器时间序列数据进行分类
MATLAB用深度学习长短期记忆 (LSTM) 神经网络对智能手机传感器时间序列数据进行分类
25 1
MATLAB用深度学习长短期记忆 (LSTM) 神经网络对智能手机传感器时间序列数据进行分类
|
13天前
|
机器学习/深度学习 数据可视化 测试技术
深度学习:Keras使用神经网络进行简单文本分类分析新闻组数据
深度学习:Keras使用神经网络进行简单文本分类分析新闻组数据
24 0
|
13天前
|
机器学习/深度学习 数据可视化 数据挖掘
R语言深度学习卷积神经网络 (CNN)对 CIFAR 图像进行分类:训练与结果评估可视化
R语言深度学习卷积神经网络 (CNN)对 CIFAR 图像进行分类:训练与结果评估可视化
30 9
|
14天前
|
机器学习/深度学习 运维 监控
TensorFlow分布式训练:加速深度学习模型训练
【4月更文挑战第17天】TensorFlow分布式训练加速深度学习模型训练,通过数据并行和模型并行利用多机器资源,减少训练时间。优化策略包括配置计算资源、优化数据划分和减少通信开销。实际应用需关注调试监控、系统稳定性和容错性,以应对分布式训练挑战。
|
14天前
|
机器学习/深度学习 API 算法框架/工具
R语言深度学习:用keras神经网络回归模型预测时间序列数据
R语言深度学习:用keras神经网络回归模型预测时间序列数据
20 0
|
14天前
|
机器学习/深度学习 数据采集 并行计算
Matlab用深度学习长短期记忆(LSTM)神经网络对文本数据进行分类
Matlab用深度学习长短期记忆(LSTM)神经网络对文本数据进行分类
15 0