ICASSP 2022 | 前沿音视频成果分享:基于可变形卷积的压缩视频质量增强网络

简介: 极大提升低质量视频修复增强

阿里云视频云视频编码与增强技术团队最新研究成果论文《基于可变形卷积的压缩视频质量增强网络》(Deformable Convolution Dense Network for Compressed Video Quality Enhancement)已被 ICASSP 2022 Image, Video & Multidimensional Signal Processing 主题会议接收,并受邀在今年5月的全球会议上向工业界和学术界进行方案报告。以下为技术成果的核心内容分享。


佳芙|作者


背景

视频压缩算法是一种广泛应用于视频传播和视频存储的技术,它能够帮助节省带宽和节约存储空间,但同时也带来了视频质量下降的问题。压缩视频质量增强任务的目标便是减少由视频压缩带来的 artifacts,提升视频质量。


近些年来,基于多帧策略的方法成为了压缩视频质量增强任务中的主流,为了融合多帧信息,这些方法大多都严重依赖于光流估计,然而不准确且低效率的光流估计算法限制住了增强算法的性能。为了打破光流估计算法的限制,本文提出了一种结合了可变形卷积的稠密残差连接网络结构,这个网络结构无需在显式光流估计的帮助下就能完成从高质量帧到低质量帧的补偿。


利用可变形卷积来实现隐式的运动估计,并通过稠密残差连接来提高模型对误差的容忍度。具体而言,我们所提出的网络结构由两个模块组成,分别是利用可变形卷积来实现隐式估计的运动补偿模块,以及使用稠密残差连接来提高模型误差容忍度和信息保留度的质量增强模块,此外,本文还提出了一个新的边缘增强损失来增强物体边缘结构。在公开数据集上的实验结果表明,该方法显著优于其他 baseline 模型。


方法解析

1.png

受到 MFQE[1] 的启发,我们的方法也使用了 PQF 来作为参考帧。在 MFQE 中,PQF 被定义为质量高于其前后连续帧的视频帧,而在本文中,使用了 I 帧来作为 PQF,高质量的 PQF 可以为低质量的输入帧提供更准确的信息,从而更大限度地提升视频帧的质量。


图 1 展示了我们的模型结构,其中 表示当前帧, 分别代表最近的前后 PQF,MC module 代表运动补偿模块,后方的多个密集残差块和卷积层组成了质量增强模块。


将 PQF( )作为参考帧,运动补偿模块中的可变形卷积层可为其预测时序运动信息,并将参考帧补偿为输入帧的内容,此时的补偿帧 同时具有和输入帧相似的内容以及和参考帧 相近的质量。


接着,质量增强模块 将融合多个参考帧的信息,最终输出一个增强帧



此外,考虑到 artifacts 通常出现在物体边缘附近,我们针对性地提出了一个边缘增强损失,这个损失可以检测并强调视频帧中的物体边缘 ,帮助模型更好地重建被 artifacts 破坏掉的物体轮廓。



实验结果

2.png

峰值信噪比(PSNR)和结构相似性(SSIM)是最为广泛使用的图像质量评估指标,为了更方便直观地比较算法效果,本文使用了 ,即增强帧相对于输入帧的 PSNR 和 SSIM 的增量来作为评估指标。


将我们的方法与其他 5 个 baseline 模型进行了比较,在 5 个对比方法中,ARCNN[2]、DnCNN[3] 和 RNAN[4] 都是压缩图像质量增强算法,能够独立地对每一个视频帧进行增强,但表现一般。MFQE 1.0 则是一个基于多帧策略和 PQF 的压缩视频质量增强算法,在 MFQE 1.0 的基础上,MFQE 2.0[5] 通过改进 PQF 检测器和质量增强模块来进一步提升了增强效果。从表 1 中可以看出,我们的方法可获得了比其他 5 个方法更高的 。特别地,对于 QP=37 的测试序列,我们相对于 MFQE2.0 的性能提升接近是 MFQE2.0 相对于 MFQE1.0 的提升的两倍。


3.png

图 2 展示了 5 种方法的主观效果,显然我们所提的方法可以将视频帧的质量提升得更高。以图 2 中的球、伞架和嘴巴为例,我们的方法恢复出了更清晰的物体边缘和更多的细节,这说明对于视频中快速运动的物体,比如球,我们网络中使用的金字塔结构的可变形卷积可以更准确地补偿运动,并且在质量增强模块的高效帮助和边缘增强损失的正确引导下,本文方法在边缘重建和细节补充上获得了更优表现。


基于该技术的深度研发,极大提升了阿里云视频云窄带高清产品对低质量视频的边缘细节修复效果,尤其是在人们比较关注的人脸区域提升效果更加显著,从而为用户提供更好的观看体验,该成果可广泛运用于短视频和直播场景中,如已应用于央视春晚、阿里健康等场景。此外,该项技术对中高质量视频也有很好的视觉提升效果,在同等带宽下,使整体画面变得更加清晰,未来该技术还将广泛应用于更多的场景以提升观看体验。


关于窄带高清

窄带高清是一项基于阿里云独家转码技术的媒体处理功能,采用阿里云独有算法,突破视频编码器能力上限,对转码技术进行升级和迭代,持续优化视频播放的流畅度与清晰度,实现在同等画质下更省流、在同等带宽下更高清的观看体验。窄带高清利用其低码高清、画质重生、场景定制、节省 50% 带宽成本等技术特点,为 2022 年北京“云上冬奥”和阿里云聚“Alibaba Cloud ME”提供了重要技术支撑。(窄带高清产品官网


参考文献

[1]Ren Yang, Mai Xu, Zulin Wang, and Tianyi Li, “Multiframe quality enhancement for compressed video,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 6664–6673.


[2]Chao Dong, Yubin Deng, Chen Change Loy, and Xiaoou Tang, “Compression artifacts reduction by a deep convolutional network,” in Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 576–584.


[3]Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and Lei Zhang, “Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising,” IEEE Transactions on Image Processing, vol. 26, no. 7, pp. 3142–3155, 2017.


[4]Yulun Zhang, Kunpeng Li, Kai Li, Bineng Zhong, and Yun Fu, “Residual non-local attention networks for image restoration,” arXiv preprint arXiv:1903.10082, 2019.


[5] Zhenyu Guan, Qunliang Xing, Mai Xu, Ren Yang, Tie Liu, and Zulin Wang, “Mfqe 2.0: A new approach for multi-frame quality enhancement on compressed video,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019.



「视频云技术」你最值得关注的音视频技术公众号,每周推送来自阿里云一线的实践技术文章,在这里与音视频领域一流工程师交流切磋。公众号后台回复【技术】可加入阿里云视频云产品技术交流群,和业内大咖一起探讨音视频技术,获取更多行业最新信息。

相关文章
|
22天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
228 55
|
1月前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
165 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
1月前
|
机器学习/深度学习 资源调度 算法
图卷积网络入门:数学基础与架构设计
本文系统地阐述了图卷积网络的架构原理。通过简化数学表述并聚焦于矩阵运算的核心概念,详细解析了GCN的工作机制。
92 3
图卷积网络入门:数学基础与架构设计
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)##
在当今的人工智能领域,深度学习已成为推动技术革新的核心力量之一。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,因其在图像和视频处理方面的卓越性能而备受关注。本文旨在深入探讨CNN的基本原理、结构及其在实际应用中的表现,为读者提供一个全面了解CNN的窗口。 ##
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN): 从理论到实践
本文将深入浅出地介绍卷积神经网络(CNN)的工作原理,并带领读者通过一个简单的图像分类项目,实现从理论到代码的转变。我们将探索CNN如何识别和处理图像数据,并通过实例展示如何训练一个有效的CNN模型。无论你是深度学习领域的新手还是希望扩展你的技术栈,这篇文章都将为你提供宝贵的知识和技能。
325 7
|
2月前
|
机器学习/深度学习 自然语言处理 算法
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
64 1
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
探索深度学习中的卷积神经网络(CNN)及其在现代应用中的革新
探索深度学习中的卷积神经网络(CNN)及其在现代应用中的革新
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
本文旨在通过深入浅出的方式,为读者揭示卷积神经网络(CNN)的神秘面纱,并展示其在图像识别领域的实际应用。我们将从CNN的基本概念出发,逐步深入到网络结构、工作原理以及训练过程,最后通过一个实际的代码示例,带领读者体验CNN的强大功能。无论你是深度学习的初学者,还是希望进一步了解CNN的专业人士,这篇文章都将为你提供有价值的信息和启发。
|
2月前
|
机器学习/深度学习 人工智能 网络架构
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
63 1
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)

热门文章

最新文章