【Java 虚拟机原理】Dalvik 虚拟机 ( 简介 | CPU 指令集 | Dalvik 虚拟机内存 )

简介: 【Java 虚拟机原理】Dalvik 虚拟机 ( 简介 | CPU 指令集 | Dalvik 虚拟机内存 )

文章目录

一、Dalvik 虚拟机简介

二、CPU 指令集

三、Dalvik 虚拟机内存





一、Dalvik 虚拟机简介


Android 5.0 5.05.0 之前使用的是 Dalvik 虚拟机 , 5.0 5.05.0 之后使用的是 ART 虚拟机 ;


Dalvik 虚拟机 也是 Java 虚拟机的一种 , 但是其没有获得 Sun 的测试审核 , 经过 Sun 公司测试 , 审核 , 授权后 , 虚拟机才能叫做 Java 虚拟机 , 只是名字上有区别 , 但是其还是符合 JVM 规范的 ;


同理 , 手机厂商必须经过 Google 测试审核之后 , 才能叫 Android 手机 ;



Dalvik 虚拟机 的 内存结构 , 与 JVM 有一定的区别 ;


JVM 主要在 PC 端使用 , 运行在 x86 架构 CPU 上 ;

DVM 主要是在手机端使用 , 运行在 arm 架构 CPU 上 , DVM 的内存优化比较高 ;





二、CPU 指令集


不同架构上的 Java 虚拟机 实现也是不同的 ;


CPU 架构参考 【C 语言】CPU 架构 ( CPU 指令集类型 | CPU 指令类型 | CPU 架构 )


RISC : Reduced Instruction Set Computers , 精简指令集 , 手机使用的 ARM 芯片 ( 高通 ) 就是精简指令集 , Android 是基于 ARM 架构的操作系统 ;


CISC : Complex Instruction Set Computers , 复杂指令集 , PC 机的 x86 架构 CPU ( Intel , AMD ) 就是复杂指令集 ; Linux , Windows 是基于 x86 架构的操作系统 ;



复杂指令集示例 : 复杂指令集中 , 所有的动作都是定义好的 ,


以做菜为例 : 洗菜 , 切菜 , 炒菜 , 放调料 , 装盘 ; 将所有步骤定义好 ; 只要 5 55 个指令 , 就可以完成 ;

运行速度高 , 效率高 , 功耗低 ;

精简指令集示例 : 精简指令集中 , 只有最基础的指令 , 复杂指令需要自己合成 ;


以做菜为例 : 洗菜 ( 放水 , 放菜 , 搅拌 , 沥干 ) , 切菜 ( 准备案板 , 准备菜刀 , 切片 ) , 炒菜 ( 起锅 , 烧油 ) , 放调料 ( 放花生油 , 放酱油 , 放盐 ) , 装盘 ( 准备盘子 , 从锅里倒在盘子中 ) ; 需要 14 1414 个指令 , 才能完成 ;

需要为每个步骤输入指令 , 速度慢 , 效率低 , 功耗高 ;


CPU 位数 : 64 / 32 64 / 3264/32 位 , 表示单次读取指令的吞吐量 , 64 6464 位表示一次可以读取 64 6464 位 ( 8 88 Byte ) 的指令 ;






三、Dalvik 虚拟机内存


DVM 堆分为 2 22 部分 , Active Heap 和 Zygote Heap ;


Android 系统刚启动的时候 , 没有启动应用 , 只有 Zygote 进程 , 所有的应用都是 Zygote 进程 fork() 启动的 ;


Zygote Heap 就是 Zygote 进程的堆 ;


当有第一个 Android 应用进程启动后 , 就会出现 Active Heap 堆 ;


image.png



DVM 内存划分 :


Zygote Heap 堆内存中 , 有一部分区域的内存是只读的 , 如系统相关的库 , 共享库 , 预置库 , 这些内存数据所有应用公用 ;


每个应用都会在 Active Heap 堆中分配一块内存 ;



DVM 借助一些 辅助数据结构 管理堆内存 ;


Card Table : 记录对象的引用情况 , 辅助 CMS 并行垃圾回收器使用 ;

Live Heap Bitmap : 记录上一次 GC 后存活的对象 ;

Mark Heap Bitmap : 记录当前存活的对象 ;

上一次存活 , 本次没有存活的对象 , 是本次需要被回收的对象 ; 这些对象由 Mark Stack 找出 ;


Mark Stack 检索所有的引用对象 , 检查哪些对象需要被回收 ;


目录
相关文章
|
6天前
|
存储 缓存 程序员
软考软件评测师——计算机组成与体系结构(CPU指令系统)
本内容详细解析了计算机中央处理器(CPU)的核心架构及其关键组件的工作原理。首先介绍了CPU的四大核心模块:运算单元、控制单元、寄存器阵列和内部总线,并阐述其在数据处理中的核心职责。接着深入探讨了算术逻辑部件(ALU)的功能与专用寄存器的作用,以及通用寄存器对性能提升的意义。随后分析了控制单元的指令处理流程及特殊寄存器的功能。此外,还解析了寄存器系统的分类与设计特点,并对比了不同内存访问模式的特点与应用场景。最后,通过历年真题巩固相关知识点,帮助理解CPU各组件的协同工作及优化策略。
|
16天前
|
缓存 Java Android开发
|
3月前
|
存储 缓存 算法
JVM简介—1.Java内存区域
本文详细介绍了Java虚拟机运行时数据区的各个方面,包括其定义、类型(如程序计数器、Java虚拟机栈、本地方法栈、Java堆、方法区和直接内存)及其作用。文中还探讨了各版本内存区域的变化、直接内存的使用、从线程角度分析Java内存区域、堆与栈的区别、对象创建步骤、对象内存布局及访问定位,并通过实例说明了常见内存溢出问题的原因和表现形式。这些内容帮助开发者深入理解Java内存管理机制,优化应用程序性能并解决潜在的内存问题。
215 29
JVM简介—1.Java内存区域
|
7月前
|
监控 算法 Java
Java虚拟机(JVM)的垃圾回收机制深度解析####
本文深入探讨了Java虚拟机(JVM)的垃圾回收机制,旨在揭示其背后的工作原理与优化策略。我们将从垃圾回收的基本概念入手,逐步剖析标记-清除、复制算法、标记-整理等主流垃圾回收算法的原理与实现细节。通过对比不同算法的优缺点及适用场景,为开发者提供优化Java应用性能与内存管理的实践指南。 ####
|
3月前
|
缓存 监控 算法
JVM简介—2.垃圾回收器和内存分配策略
本文介绍了Java垃圾回收机制的多个方面,包括垃圾回收概述、对象存活判断、引用类型介绍、垃圾收集算法、垃圾收集器设计、具体垃圾回收器详情、Stop The World现象、内存分配与回收策略、新生代配置演示、内存泄漏和溢出问题以及JDK提供的相关工具。
JVM简介—2.垃圾回收器和内存分配策略
|
6月前
|
监控 算法 Java
Java虚拟机(JVM)垃圾回收机制深度剖析与优化策略####
本文作为一篇技术性文章,深入探讨了Java虚拟机(JVM)中垃圾回收的工作原理,详细分析了标记-清除、复制算法、标记-压缩及分代收集等主流垃圾回收算法的特点和适用场景。通过实际案例,展示了不同GC(Garbage Collector)算法在应用中的表现差异,并针对大型应用提出了一系列优化策略,包括选择合适的GC算法、调整堆内存大小、并行与并发GC调优等,旨在帮助开发者更好地理解和优化Java应用的性能。 ####
134 0
|
3月前
|
存储 编解码 安全
阿里云高性能企业级甄选Intel第八代计算型c8i、通用型g8i和内存型r8i实例简介
计算型c8i、通用型g8i和内存型r8i实例是阿里云推出的高性能企业级甄选Intel第八代云服务器实例,采用CIPU+飞天技术架构,搭载最新的Intel 第五代至强可扩展处理器(代号EMR),性能进一步大幅提升,同时拥有AMX加持的AI能力增强,并在全球范围率先支持TDX机密虚拟机能力,实现了AI增强和全面安全防护的两大特色优势。本文将为您介绍这三个实例规格的性能、适用场景及最新活动价格以及选择指南,以供选择参考。
186 18
|
5月前
|
消息中间件 Linux
Linux:进程间通信(共享内存详细讲解以及小项目使用和相关指令、消息队列、信号量)
通过上述讲解和代码示例,您可以理解和实现Linux系统中的进程间通信机制,包括共享内存、消息队列和信号量。这些机制在实际开发中非常重要,能够提高系统的并发处理能力和数据通信效率。希望本文能为您的学习和开发提供实用的指导和帮助。
400 20
|
6月前
|
Java 对象存储 开发者
如何找出Java进程占用CPU高的元凶
本文记录了一次Java进程CPU占用率过高的问题和排查思路。