【计算机网络】数据链路层 : 后退 N 帧协议 GBN ( 滑动窗口 | 发送窗口长度 | “发送方“ 累计确认、超时机制 | “接收方“ 按序接收、确认帧发送机制 | 计算示例 )★(二)

简介: 【计算机网络】数据链路层 : 后退 N 帧协议 GBN ( 滑动窗口 | 发送窗口长度 | “发送方“ 累计确认、超时机制 | “接收方“ 按序接收、确认帧发送机制 | 计算示例 )★(二)

七、 后退 N 帧协议 ( GBN ) 运行细节


后退 N 帧协议 运行细节 :


① 发送端连续发送 :


发送窗口 大小为 4 44 , 可以一次性发送 4 44 帧数据 , { 0 , 1 , 2 , 3 } \{ 0, 1, 2, 3 \}{0,1,2,3} ;


发送端 发送 0 00 帧 , 接收方 接收到 0 00 帧 , 返回 ACK 0 00 ;


发送端 发送 1 11 帧 , 接收方 接收到 1 11 帧 , 返回 ACK 1 11 ;



② 丢失 2 22 帧 : 发送端 发送 2 22 帧 , 2 22 号帧 半路丢失 , 接收方 没有收到 2 22 帧 ;



③ 期待 2 22 帧 : 接收方 的 期待帧是 第 2 22 帧 ;



④ 接收方 获知 丢帧 : 发送方 发送 3 33 帧 , 接收方 接收到 3 33 帧 , 此时发现 2 22 帧丢失 , 直接丢弃 3 33 帧 , 并向接收方 发送 上一个成功接收的帧的确认信息 ACK 1 11 , 让发送方从 第 2 22 帧开始发送 ;



⑤ 发送方 收到 ACK 确认帧 :


发送方 收到 ACK 0 00 之后 , 发送窗口 向后 滑动一位 , 变成 { 1 , 2 , 3 , 4 } \{ 1, 2, 3 , 4 \}{1,2,3,4} ;


发送方 收到 ACK 1 11 之后 , 发送窗口 向后 滑动一位 , 变成 { 2 , 3 , 4 , 5 } \{ 2, 3 , 4 , 5\}{2,3,4,5} ;



⑥ 发送超时处理 : 如果 发送方 一直 没有收到 ACK 2 22 , 等待时间超时 , 就会 后退 N NN 帧 , 重发 2 , 3 , 4 , 5 2 , 3, 4, 52,3,4,5 帧 ;






八、 后退 N 帧协议 ( GBN ) 发送窗口长度


后退 N 帧协议 滑动窗口长度 :


使用 n nn 比特 对 帧进行编号 , 发送窗口的尺寸 W T W_TW

T


 满足如下公式要求 :


1 ≤ W T ≤ 2 n − 1 1 \leq W_T \leq 2^{n} - 1

1≤W

T


≤2

n

−1



如果不满足上述公式 , 就会因为 发送窗口 过大 , 接收方 无法识别 新帧 和 旧帧 ;



滑动窗口示例 :


如使用 2 22 比特 进行帧编号 , 那么滑动窗口大小是 1 ≤ W T ≤ 3 1 \leq W_T \leq 31≤W

T


≤3 ;


如果滑动窗口有 4 44 比特 , 那么发送 0 , 1 , 2 , 3 0 , 1, 2, 30,1,2,3 四帧数据 给 接收端 , 四个帧全部丢失 , 此时就会将 四个帧 再次重传 , 这 4 44 帧数据 , 是重发的旧的帧 还是下一个滑动窗口 新的帧 , 无法确定 ;






九、 后退 N 帧协议 ( GBN ) 重点


发送方 累计确认 机制 : 收到 ACK N NN , 就表示 N NN 号帧及之前的帧 , 全部正确 ;



接收方 按序接收 : 接收方 只能 按照顺序接收 , 人如果中间有帧丢失 , 那么后续帧全部丢弃 ;



接收方 确认帧 : 接收方 如果 收到错误帧 , 失序帧 , 那么查找最近成功接收的正确的帧的最大的 , 按序到达的帧 序号是多少 , 发送该帧对应的 ACK 确认帧 ;



发送窗口 : n nn 是帧序号编码长度 , 发送窗口大小 最大是 2 n − 1 2^n - 12

n

−1 , 最小 1 11 ;






十、 后退 N 帧协议 ( GBN ) 计算示例


数据链路层 采用 后退 N NN 帧协议 , 发送方 发送了 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 0,1,2,3,4,5,6,70,1,2,3,4,5,6,7 编号的数据帧 , 当计时器超时时 , 只接收到了 0 , 2 , 3 0 , 2, 30,2,3 帧的确认帧 , 发送方需要重发的帧数时 4 , 5 , 6 , 7 4,5,6,74,5,6,7 帧 ;



计时器超时 , 发送方 发送 已发送 , 但是没有被 确认 的帧 ;


确认机制 是 累计确认 的 , 发送方 接收到了 3 33 确认帧 , 说明 3 33 之前的帧已经成功接收了 , 虽然没有收到 1 11 确认帧 , 但是该帧已经默认接收成功 ;


重发 没有被确认的帧 , 即 4 , 5 , 6 , 7 4,5,6,74,5,6,7 帧 ;






十一、 后退 N 帧协议 ( GBN ) 协议性能


后退 N 帧协议 ( GBN ) 协议性能 :


① 优点 : 发送端可以先 连续 发送 滑动窗口中的 N NN 帧 数据帧 , 提高了信道利用率 ;


② 缺点 : 选择重传时 , 将某些正确发送的数据帧进行了重传 , 降低了传输效率 ;



为了解决上述弊端 , 引入了 选择重传协议 ;


目录
相关文章
|
1月前
|
机器学习/深度学习
【从零开始学习深度学习】33.语言模型的计算方式及循环神经网络RNN简介
【从零开始学习深度学习】33.语言模型的计算方式及循环神经网络RNN简介
【从零开始学习深度学习】33.语言模型的计算方式及循环神经网络RNN简介
|
1月前
|
存储 算法 网络虚拟化
【计算机网络】学习笔记,第三篇:数据链路层
现在的光纤宽带接入 FTTx 都要使用 PPPoE 的方式进行接入。在 PPPoE 弹出的窗口中键入在网络运营商购买的用户名和密码,就可以进行宽带上网了 利用 ADSL 进行宽带上网时,从用户个人电脑到家中的 ADSL 调制解调器之间,也是使用 RJ-45 和 5 类线(即以太网使用的网线)进行连接的,并且也是使用 PPPoE 弹出的窗口进行拨号连接的
38 5
|
2天前
|
机器学习/深度学习 编解码 计算机视觉
【YOLOv8改进- Backbone主干】BoTNet:基于Transformer,结合自注意力机制和卷积神经网络的骨干网络
【YOLOv8改进- Backbone主干】BoTNet:基于Transformer,结合自注意力机制和卷积神经网络的骨干网络
|
28天前
|
存储 机器学习/深度学习 弹性计算
阿里云ECS计算型c8i服务器测评_网络PPS_云盘IOPS性能参数
阿里云ECS计算型c8i实例采用Intel Xeon Emerald Rapids或Sapphire Rapids CPU,主频2.7 GHz起,支持CIPU架构,提供强大计算、存储、网络和安全性能。适用于机器学习、数据分析等场景。实例规格从2核到192核,内存比例1:2,支持ESSD云盘,网络带宽高达100 Gbit/s,具备IPv4/IPv6,vTPM和内存加密功能。详细规格参数表包括不同实例的vCPU、内存、网络带宽、IOPS等信息,最高可达100万PPS和100万IOPS。
|
29天前
|
机器学习/深度学习 算法
**反向传播算法**在多层神经网络训练中至关重要,它包括**前向传播**、**计算损失**、**反向传播误差**和**权重更新**。
【6月更文挑战第28天】**反向传播算法**在多层神经网络训练中至关重要,它包括**前向传播**、**计算损失**、**反向传播误差**和**权重更新**。数据从输入层流经隐藏层到输出层,计算预测值。接着,比较预测与真实值计算损失。然后,从输出层开始,利用链式法则反向计算误差和梯度,更新权重以减小损失。此过程迭代进行,直到损失收敛或达到训练次数,优化模型性能。反向传播实现了自动微分,使模型能适应训练数据并泛化到新数据。
35 2
|
28天前
|
存储 弹性计算 网络协议
阿里云服务器ECS计算型c7实例详解_网络PPS_云盘IOPS性能参数
阿里云ECS计算型c7实例,基于三代神龙架构,采用Intel Ice Lake CPU,2.7 GHz基频,3.5 GHz全核睿频,提供高性能计算、存储和网络能力。支持vTPM和Enclave特性,适用于高网络负载、游戏、数据分析等场景。实例规格从2核4GB至128核256GB,最大网络收发包可达2400万PPS。详细规格及性能参数见官方页面。
|
1月前
计算机网络学习记录 数据链路层 Day3 (上)(1)
计算机网络学习记录 数据链路层 Day3 (上)(1)
20 2
|
1月前
计算机网络——数据链路层-媒体接入控制-静态划分信道(频分复用FDM、时分复用TDM、波分复用WDM、码分复用CDM)
计算机网络——数据链路层-媒体接入控制-静态划分信道(频分复用FDM、时分复用TDM、波分复用WDM、码分复用CDM)
40 1
|
1月前
|
机器学习/深度学习 数据采集 自然语言处理
【注意力机制重大误区】网络模型增加注意力机制后,性能就一定会得到提升?有哪些影响因素?
【注意力机制重大误区】网络模型增加注意力机制后,性能就一定会得到提升?有哪些影响因素?
|
2天前
|
存储 安全 网络安全
云计算与网络安全:技术演进与挑战
在数字化时代的浪潮中,云计算以其高效、灵活和成本效益显著的优势成为企业数字化转型的核心驱动力。然而,随着云服务的广泛应用,网络安全问题也愈发凸显,成为制约云计算发展的关键因素。本文从云计算服务的基本概念出发,深入探讨了网络安全的重要性,并详细分析了云环境下的信息安全威胁。通过对比传统网络环境和云计算环境的安全挑战,本文揭示了云计算特有的安全风险,并提出了相应的防护策略。最后,本文展望了云计算与网络安全的未来发展趋势,旨在为相关领域的专业人士提供参考和启示。
16 0