【Android 性能优化】布局渲染优化 ( CPU 与 GPU 架构分析 | 安卓布局显示流程 | 视觉与帧率分析 | 渲染超时卡顿分析 | 渲染过程与优化 )

简介: 【Android 性能优化】布局渲染优化 ( CPU 与 GPU 架构分析 | 安卓布局显示流程 | 视觉与帧率分析 | 渲染超时卡顿分析 | 渲染过程与优化 )

文章目录

一、 CPU 在图形处理领域的情况

二、 CPU 与 GPU 架构对比

三、 Android 布局显示到屏幕流程

四、 人眼的视觉相关分析

五、 渲染超时卡顿分析

六、 渲染过程与优化





一、 CPU 在图形处理领域的情况


GPU 出现前 CPU 在图形处理领域的情况 :



① 承担工作多 : GPU 没有出现之前 , CPU 要承担很多工作 , 如逻辑运算 , 内存管理 , 显示控制 , 界面渲染 等操作 ;


② 设备弊端 : 不能显示复杂的图形 , 不能运行渲染逼真的游戏 , 如大型 3D 游戏等 ;


③ CPU 在图形领域的性能瓶颈 : CPU 即使超过 2GHz 的主频 , 其运算能力并不能完全发挥出来 , 无法显示复杂画面 , 不能提高图形绘制的质量 ;



鉴于上述 CPU 的各种弊端 , 就有了 GPU 的设计 , CPU 将显示相关的计算交给 GPU 完成 ;






二、 CPU 与 GPU 架构对比




CPU 与 GPU 架构 :



① 控制单元 ( 黄色部分 ) : 控制器 , 控制 CPU 运行工作 , 执行如 取出指令操作 , 控制其它模块运行 ;


② 计算单元 ( 绿色部分 ) : 算术逻辑单元 , 负责数学运算 , 逻辑运算 ;


③ 存储单元 ( 橙色部分 ) : Cache 高速缓存器 , DRAM , 用于存储 CPU 运算信息 ;




CPU 与 GPU 对比 :

image.png


① 逻辑算术运算 : 图像处理时 , 大量使用逻辑运算 , 如 RGB 像素值的位运算 ; GPU 的计算单元多于 CPU , 因此 GPU 的逻辑运算能力强于 CPU ;


② 程序执行逻辑 : CPU 中控制单元与存储单元功能强大 , 控制程序运行的能力远远高于 GPU ;


③ 总结 : GPU 适合用于大量的复杂的算术逻辑计算 , 如图像运算 , 声音运算等 ; CPU 适合用于控制系统 , 应用运行 ;






三、 Android 布局显示到屏幕流程


Android 布局显示到屏幕流程 :



① 定义布局中的组件 : 在 xml 布局文件中定义 ImageView 布局 ;


② 加载组件到内存 : 通过 LayoutInflater 将该 ImageView 组件解析成 ImageView 对象 , 加载到内存中 , 该对象中封装了组件位置 , 显示图片等信息 ;


③ CPU 处理 : 将上述 ImageView 对象进行计算处理 , 最终得到该组件对应的多维向量图形 ( 使用向量表示的图形 ) ;


④ GPU 处理 : GPU 接收上述多维向量图形 , GPU 将该向量图进行栅格化 , 将向量图转为位图 ( 矢量图转为像素图 ) , 计算出对应屏幕上每个像素点显示的值 ;


⑤ 显示器显示 : GPU 向显示器推送位图 , 会判定前面的 4 44 个步骤花费时间是否小于 16ms , 如果小于该值 , 那么就显示该位图 , 如果大于该值 , 那么不绘制 , 等待下一帧位图绘制完成 , 这是为了避免显示卡顿而设计的机制 , 虽然丢了一帧数据 , 但是显示很流畅 ;






四、 人眼的视觉相关分析


1 . Android 刷新帧率 :


① 最低流畅帧率 : 保持画面流畅的最低帧率是 60FPS , 当帧率低于 60 FPS 时 , 就会画面卡顿的感觉 ;


② 60 帧率对应的每一帧刷新间隔 : 1000 60 = 16.66 \dfrac{1000}{60} = 16.66

60

1000


=16.66 , 即每隔 16.66 毫秒刷新一次 ;


③ Android 设备刷新机制 : Android 中每隔 16ms 就会发出 VSYNC 信号通知屏幕该进行渲染 , 每次渲染的时间都必须小于 16 毫秒 , 才能保证 60 FPS 的帧率 ; 如果渲染时间大于 16 毫秒 , 就无法保证 60 FPS 的帧率, 此时就会造成卡顿 ;




2 . 人眼对于各个帧率的接受程度 :



① 12 FPS : 达到这个帧率 , 人眼可以认为该图像是连续的动作 , 如 GIF 图像 , 翻动作小人书等 ;


② 24 FPS : 初期的电影动画的帧率 , 勉强接收 ;


③ 30 FPS : 早期的电子游戏 , 要求高于电影 ;


上面的三种都是人与视频内容不交互 , 或少量交互 , 人感觉不出来卡顿 ;


④ 60 FPS : 在交互频繁的游戏中 , 低于 60 FPS , 是可以感觉出来的 , 因此动作类的游戏尽量都要达到 60 FPS ;


⑤ 60 FPS 以上 : 60 FPS 与 144 FPS 是等效的 , 人眼察觉不到这个差异 ;



打游戏时 , 感觉很卡 , 说明帧率低于 60 帧了 , 越低迟滞感越强烈 ;






五、 渲染超时卡顿分析


1. VSync 信号 : Android 每隔 16 毫秒发出 VSync 信号 , 屏幕接收到该信号时 , 开始显示渲染好的位图 , CPU 和 GPU 开始渲染新的图像 ;



2. 渲染与显示时间固定 : 渲染开始 与 屏幕绘制的时间都是固定的 , 就是 VSync 信号发出时间 , 并且其间隔必须是 16 毫秒 , 在固定的时间开始渲染 , 在固定的 16 毫秒之后 , 显示到屏幕中 , 这样就是固定的 60Hz 的屏幕刷新频率 ;



3. 渲染提前完成 : 渲染可以提早完成 , 如 CPU 和 GPU 在 10 毫秒时已经渲染完毕 , 将向量图栅格化后的位图传递给屏幕 , 此时等待 6 毫秒后 , 屏幕触发显示操作 , 将已经渲染完毕的位图显示出来 ;



4. 显然超时未完成 : 在某个固定的时间 , 开始渲染图片 , CPU , GPU 对布局组件对应画面进行渲染后 , 如果从开始渲染 , 到显示器显示之间的时间间隔超过了 16 毫秒 , 屏幕在 16 毫秒的时刻接收 VSync 信号触发显示 , 但是此时还处于渲染阶段 , 没有将位图传递给屏幕 , 因此仍然显示上一帧图片 , 这里就少了一帧 , 变成了 59 Hz 的刷新频率 , 如果这种超时很多 , 变成 40Hz , 30Hz , 那就非常卡了 ;




上图中应该绘制 4 帧数据 , 但是实际上只绘制了 3 帧 , 实际刷新率少了一帧 ;



image.png



六、 渲染过程与优化


1. 渲染耗时分析 : 在开始渲染到显示的 16 毫秒时间内 , 主要有 3 33 个比较大块的时间 , 3 33 个耗时操作分别与 CPU 和 GPU 相关 ;



① 布局转换工作 : CPU 将布局中的 UI 组件对象转为多维向量图形 ( 纹理 / 多边形 / 向量 ) ;


② 图像传递工作 : CPU 传递向量图形给 GPU , CPU 与 GPU 之间数据传递非常耗时 ;


③ 图像绘制工作 : GPU 将该向量图形转为由像素点组成的位图 ;




2. 渲染优化 : 优化这里有引出了布局渲染优化 , 从上述 3 33 个角度去进行渲染优化 :



① 布局转换优化 : 减少 CPU 将 UI 组件对象转为多维向量图形的耗时 ;


② 图像传递优化 : 减少 CPU 传递给 GPU 的图像数据 ;


③ 图像绘制优化 : GPU 会执行 CPU 传递过来的任何计算工作 , 即使出现了图像覆盖重绘 , GPU 也会照常执行 , 减少 GPU 的图像覆盖重绘 ;


相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
目录
相关文章
|
23天前
|
算法 数据处理 Android开发
掌握安卓性能优化的秘诀:电池寿命与运行效率的提升
【10月更文挑战第6天】 本文深入探讨了安卓应用开发中的性能优化技巧,重点分析了影响电池寿命和运行效率的关键因素,并提供了针对性的优化策略。通过代码优化、资源管理、后台任务处理等方法,开发者可以显著提升应用的续航能力和流畅度。同时,结合具体案例,展示了如何在实际开发中应用这些技巧,确保应用在各种场景下都能保持高效运行。本文旨在为安卓开发者提供实用的性能优化指导,助力其打造更优质的应用体验。
33 2
|
1天前
|
Android开发 开发者 UED
安卓开发中自定义View的实现与性能优化
【10月更文挑战第28天】在安卓开发领域,自定义View是提升应用界面独特性和用户体验的重要手段。本文将深入探讨如何高效地创建和管理自定义View,以及如何通过代码和性能调优来确保流畅的交互体验。我们将一起学习自定义View的生命周期、绘图基础和事件处理,进而探索内存和布局优化技巧,最终实现既美观又高效的安卓界面。
11 5
|
1天前
|
运维 NoSQL Java
后端架构演进:微服务架构的优缺点与实战案例分析
【10月更文挑战第28天】本文探讨了微服务架构与单体架构的优缺点,并通过实战案例分析了微服务架构在实际应用中的表现。微服务架构具有高内聚、低耦合、独立部署等优势,但也面临分布式系统的复杂性和较高的运维成本。通过某电商平台的实际案例,展示了微服务架构在提升系统性能和团队协作效率方面的显著效果,同时也指出了其带来的挑战。
15 4
|
18天前
|
存储 缓存 网络协议
5个Android性能优化相关的深度面试题
本文涵盖五个Android面试题及其解答,包括优化应用启动速度、内存泄漏的检测与解决、UI渲染性能优化、减少内存抖动和内存溢出、优化网络请求性能。每个问题都提供了详细的解答和示例代码。
20 2
|
20天前
|
存储 SQL 分布式计算
湖仓一体架构深度解析:构建企业级数据管理与分析的新基石
【10月更文挑战第7天】湖仓一体架构深度解析:构建企业级数据管理与分析的新基石
28 1
|
22天前
|
监控 测试技术 Android开发
掌握安卓性能优化的关键策略
【10月更文挑战第7天】 在移动应用开发领域,性能优化是一项至关重要的任务。本文将探讨安卓应用性能优化的重要性、关键策略以及实际操作建议,帮助开发者提升应用的用户体验和竞争力。通过深入浅出的方式,我们将从背景介绍到具体实践,全面解析安卓性能优化的各个维度。
|
30天前
|
机器学习/深度学习 弹性计算 编解码
阿里云服务器计算架构X86/ARM/GPU/FPGA/ASIC/裸金属/超级计算集群有啥区别?
阿里云服务器ECS提供了多种计算架构,包括X86、ARM、GPU/FPGA/ASIC、弹性裸金属服务器及超级计算集群。X86架构常见且通用,适合大多数应用场景;ARM架构具备低功耗优势,适用于长期运行环境;GPU/FPGA/ASIC则针对深度学习、科学计算、视频处理等高性能需求;弹性裸金属服务器与超级计算集群则分别提供物理机级别的性能和高速RDMA互联,满足高性能计算和大规模训练需求。
|
2月前
|
存储 监控 安全
SaaS业务架构:业务能力分析
【9月更文挑战第20天】在数字化时代,软件即服务(SaaS)模式逐渐成为企业软件解决方案的首选。SaaS 业务架构设计对于提供高效、可靠的服务至关重要。其核心业务能力包括:用户管理(注册登录、角色权限)、数据管理(存储备份、安全共享)、业务流程管理(设计定制、工作流自动化)、应用集成(第三方应用、移动应用)及客户服务(支持培训、反馈改进)。通过优化这些能力,可为企业提供更高效、可靠的 SaaS 服务。
51 11
|
24天前
|
缓存 监控 API
探索微服务架构中的API网关模式
【10月更文挑战第5天】随着微服务架构的兴起,企业纷纷采用这一模式构建复杂应用。在这种架构下,应用被拆分成若干小型、独立的服务,每个服务围绕特定业务功能构建并通过HTTP协议协作。随着服务数量增加,统一管理这些服务间的交互变得至关重要。API网关作为微服务架构的关键组件,承担起路由请求、聚合数据、处理认证与授权等功能。本文通过一个在线零售平台的具体案例,探讨API网关的优势及其实现细节,展示其在简化客户端集成、提升安全性和性能方面的关键作用。
69 2
|
8天前
|
监控 Cloud Native Java
云原生架构下微服务治理策略与实践####
【10月更文挑战第20天】 本文深入探讨了云原生环境下微服务架构的治理策略,通过分析当前技术趋势与挑战,提出了一系列高效、可扩展的微服务治理最佳实践方案。不同于传统摘要概述内容要点,本部分直接聚焦于治理核心——如何在动态多变的分布式系统中实现服务的自动发现、配置管理、流量控制及故障恢复,旨在为开发者提供一套系统性的方法论,助力企业在云端构建更加健壮、灵活的应用程序。 ####
52 10

热门文章

最新文章