45 张图深度解析 Netty 架构与原理(二)

本文涉及的产品
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: 作为一个学 Java 的,如果没有研究过 Netty,那么你对 Java 语言的使用和理解仅仅停留在表面水平,会点 SSH 写几个 MVC,访问数据库和缓存,这些只是初等 Java 程序员干的事。如果你要进阶,想了解 Java 服务器的深层高阶知识,Netty 绝对是一个必须要过的门槛。 接下来我们会学习一个 Netty 系列教程,Netty 系列由「架构与原理」,「源码」,「架构」三部分组成,今天我们先来看看第一部分:Netty 架构与原理初探,大纲如下:

1.4. Java NIO API 简单回顾

BIO 以流的方式处理数据,而 NIO 以缓冲区(也被叫做块)的方式处理数据,块 IO 效率比流 IO 效率高很多。BIO 基于字符流或者字节流进行操作,而 NIO 基于 Channel 和 Buffer 进行操作,数据总是从通道读取到缓冲区或者从缓冲区写入到通道。Selector 用于监听多个通道上的事件(比如收到连接请求、数据达到等等),因此使用单个线程就可以监听多个客户端通道。如下图所示:

104.jpg

关于上图,再进行几点说明:

  • 一个 Selector 对应一个处理线程
  • 一个 Selector 上可以注册多个 Channel
  • 每个 Channel 都会对应一个 Buffer(有时候一个 Channel 可以使用多个 Buffer,这时候程序要进行多个 Buffer 的分散和聚集操作),Buffer 的本质是一个内存块,底层是一个数组
  • Selector 会根据不同的事件在各个 Channel 上切换
  • Buffer 是双向的,既可以读也可以写,切换读写方向要调用 Buffer 的 flip()方法
  • 同样,Channel 也是双向的,数据既可以流入也可以流出

1.4.1. 缓冲区(Buffer)

缓冲区(Buffer)本质上是一个可读可写的内存块,可以理解成一个容器对象,Channel 读写文件或者网络都要经由 Buffer。在 Java NIO 中,Buffer 是一个顶层抽象类,它的常用子类有(前缀表示该 Buffer 可以存储哪种类型的数据):

  • ByteBuffer
  • CharBuffer
  • ShortBuffer
  • IntBuffer
  • LongBuffer
  • DoubleBuffer
  • FloatBuffer

涵盖了 Java 中除 boolean 之外的所有的基本数据类型。其中 ByteBuffer 支持类型化的数据存取,即可以往 ByteBuffer 中放 byte 类型数据、也可以放 char、int、long、double 等类型的数据,但读取的时候要做好类型匹配处理,否则会抛出 BufferUnderflowException。

另外,Buffer 体系中还有一个重要的 MappedByteBuffer(ByteBuffer 的子类),可以让文件内容直接在堆外内存中被修改,而如何同步到文件由 NIO 来完成。本文重点不在于此,有兴趣的可以去探究一下 MappedByteBuffer 的底层原理。

1.4.2. 通道(Channel)

通道(Channel)是双向的,可读可写。在 Java NIO 中,Buffer 是一个顶层接口,它的常用子类有:

  • FileChannel:用于文件读写
  • DatagramChannel:用于 UDP 数据包收发
  • ServerSocketChannel:用于服务端 TCP 数据包收发
  • SocketChannel:用于客户端 TCP 数据包收发

1.4.3. 选择器(Selector)

选择器(Selector)是实现 IO 多路复用的关键,多个 Channel 注册到某个 Selector 上,当 Channel 上有事件发生时,Selector 就会取得事件然后调用线程去处理事件。也就是说只有当连接上真正有读写等事件发生时,线程才会去进行读写等操作,这就不必为每个连接都创建一个线程,一个线程可以应对多个连接。这就是 IO 多路复用的要义。

Netty 的 IO 线程 NioEventLoop 聚合了 Selector,可以同时并发处理成百上千的客户端连接,后文会展开描述。

在 Java NIO 中,Selector 是一个抽象类,它的常用方法有:

public abstract class Selector implements Closeable {
    ......
    /**
     * 得到一个选择器对象
     */
    public static Selector open() throws IOException {
        return SelectorProvider.provider().openSelector();
    }
    ......
    /**
     * 返回所有发生事件的 Channel 对应的 SelectionKey 的集合,通过
     * SelectionKey 可以找到对应的 Channel
     */
    public abstract Set<SelectionKey> selectedKeys();
    ......
    /**
     * 返回所有 Channel 对应的 SelectionKey 的集合,通过 SelectionKey
     * 可以找到对应的 Channel
     */
    public abstract Set<SelectionKey> keys();
    ......
    /**
     * 监控所有注册的 Channel,当其中的 Channel 有 IO 操作可以进行时,
     * 将这些 Channel 对应的 SelectionKey 找到。参数用于设置超时时间
     */
    public abstract int select(long timeout) throws IOException;
    /**
    * 无超时时间的 select 过程,一直等待,直到发现有 Channel 可以进行
    * IO 操作
    */
    public abstract int select() throws IOException;
    /**
    * 立即返回的 select 过程
    */
    public abstract int selectNow() throws IOException;
    ......
    /**
    * 唤醒 Selector,对无超时时间的 select 过程起作用,终止其等待
    */
    public abstract Selector wakeup();
    ......
}

在上文的使用 Java NIO 编写的服务端示例代码中,服务端的工作流程为:

1)当客户端发起连接时,会通过 ServerSocketChannel 创建对应的 SocketChannel。

2)调用 SocketChannel 的注册方法将 SocketChannel 注册到 Selector 上,注册方法返回一个 SelectionKey,该 SelectionKey 会被放入 Selector 内部的 SelectionKey 集合中。该 SelectionKey 和 Selector 关联(即通过 SelectionKey 可以找到对应的 Selector),也和 SocketChannel 关联(即通过 SelectionKey 可以找到对应的 SocketChannel)。

4)Selector 会调用 select()/select(timeout)/selectNow()方法对内部的 SelectionKey 集合关联的 SocketChannel 集合进行监听,找到有事件发生的 SocketChannel 对应的 SelectionKey。

5)通过 SelectionKey 找到有事件发生的 SocketChannel,完成数据处理。

以上过程的相关源码为:

/**
* SocketChannel 继承 AbstractSelectableChannel
*/
public abstract class SocketChannel
    extends AbstractSelectableChannel
    implements ByteChannel, 
               ScatteringByteChannel, 
               GatheringByteChannel, 
               NetworkChannel
{
    ......
}
public abstract class AbstractSelectableChannel
    extends SelectableChannel
{
    ......
    /**
     * AbstractSelectableChannel 中包含注册方法,SocketChannel 实例
     * 借助该注册方法注册到 Selector 实例上去,该方法返回 SelectionKey
     */
    public final SelectionKey register(
        // 指明注册到哪个 Selector 实例
        Selector sel, 
        // ops 是事件代码,告诉 Selector 应该关注该通道的什么事件
        int ops,
        // 附加信息 attachment
        Object att) throws ClosedChannelException {
        ......
    }
    ......
}
public abstract class SelectionKey {
    ......
    /**
     * 获取该 SelectionKey 对应的 Channel
     */
    public abstract SelectableChannel channel();
    /**
     * 获取该 SelectionKey 对应的 Selector
     */
    public abstract Selector selector();
    ......
    /**
     * 事件代码,上面的 ops 参数取这里的值
     */
    public static final int OP_READ = 1 << 0;
    public static final int OP_WRITE = 1 << 2;
    public static final int OP_CONNECT = 1 << 3;
    public static final int OP_ACCEPT = 1 << 4;
    ......
    /**
     * 检查该 SelectionKey 对应的 Channel 是否可读
     */
    public final boolean isReadable() {
        return (readyOps() & OP_READ) != 0;
    }
    /**
     * 检查该 SelectionKey 对应的 Channel 是否可写
     */
    public final boolean isWritable() {
        return (readyOps() & OP_WRITE) != 0;
    }
    /**
     * 检查该 SelectionKey 对应的 Channel 是否已经建立起 socket 连接
     */
    public final boolean isConnectable() {
        return (readyOps() & OP_CONNECT) != 0;
    }
    /**
     * 检查该 SelectionKey 对应的 Channel 是否准备好接受一个新的 socket 连接
     */
    public final boolean isAcceptable() {
        return (readyOps() & OP_ACCEPT) != 0;
    }
    /**
     * 添加附件(例如 Buffer)
     */
    public final Object attach(Object ob) {
        return attachmentUpdater.getAndSet(this, ob);
    }
    /**
     * 获取附件
     */
    public final Object attachment() {
        return attachment;
    }
    ......
}

下图用于辅助读者理解上面的过程和源码:

105.jpg

首先说明,本文以 Linux 系统为对象来研究文件 IO 模型和网络 IO 模型。

1.5. 零拷贝技术

注:本节讨论的是 Linux 系统下的 IO 过程。并且对于零拷贝技术的讲解采用了一种浅显易懂但能触及其本质的方式,因为这个话题,展开来讲实在是有太多的细节要关注。

在“将本地磁盘中文件发送到网络中”这一场景中,零拷贝技术是提升 IO 效率的一个利器,为了对比出零拷贝技术的优越性,下面依次给出使用直接 IO 技术、内存映射文件技术、零拷贝技术实现将本地磁盘文件发送到网络中的过程。

1)直接 IO 技术

使用直接 IO 技术实现文件传输的过程如下图所示。

106.jpg

上图中,内核缓冲区是 Linux 系统的 Page Cahe。为了加快磁盘的 IO,Linux 系统会把磁盘上的数据以 Page 为单位缓存在操作系统的内存里,这里的 Page 是 Linux 系统定义的一个逻辑概念,一个 Page 一般为 4K。

可以看出,整个过程有四次数据拷贝,读进来两次,写回去又两次:磁盘-->内核缓冲区-->Socket 缓冲区-->网络。

直接 IO 过程使用的 Linux 系统 API 为:

ssize_t read(int filedes, void *buf, size_t nbytes);
ssize_t write(int filedes, void *buf, size_t nbytes);

等函数。

2)内存映射文件技术

使用内存映射文件技术实现文件传输的过程如下图所示。

107.jpg

可以看出,整个过程有三次数据拷贝,不再经过应用程序内存,直接在内核空间中从内核缓冲区拷贝到 Socket 缓冲区。

内存映射文件过程使用的 Linux 系统 API 为:

void *mmap(void *addr, size_t length, int prot, int flags, int fd, off_t offset);

3)零拷贝技术

使用零拷贝技术,连内核缓冲区到 Socket 缓冲区的拷贝也省略了,如下图所示:

108.jpg

内核缓冲区到 Socket 缓冲区之间并没有做数据的拷贝,只是一个地址的映射。底层的网卡驱动程序要读取数据并发送到网络上的时候,看似读取的是 Socket 的缓冲区中的数据,其实直接读的是内核缓冲区中的数据。

零拷贝中所谓的“零”指的是内存中数据拷贝的次数为 0。

零拷贝过程使用的 Linux 系统 API 为:

ssize_t sendfile(int out_fd, int in_fd, off_t *offset, size_t count);

在 JDK 中,提供的:

FileChannel.transderTo(long position, long count, WritableByteChannel target);

方法实现了零拷贝过程,其中的第三个参数可以传入 SocketChannel 实例。例如客户端使用以上的零拷贝接口向服务器传输文件的代码为:

public static void main(String[] args) throws IOException {
    SocketChannel socketChannel = SocketChannel.open();
    socketChannel.connect(new InetSocketAddress("127.0.0.1", 8080));
    String fileName = "test.zip";
    // 得到一个文件 channel
    FileChannel fileChannel = new FileInputStream(fileName).getChannel();
    // 使用零拷贝 IO 技术发送
    long transferSize = fileChannel.transferTo(0, fileChannel.size(), socketChannel);
    System.out.println("file transfer done, size: " + transferSize);
    fileChannel.close();
}

以上部分为第一章,学习 Netty 需要的基础知识。

目录
打赏
0
0
0
0
1171
分享
相关文章
解析:HTTPS通过SSL/TLS证书加密的原理与逻辑
HTTPS通过SSL/TLS证书加密,结合对称与非对称加密及数字证书验证实现安全通信。首先,服务器发送含公钥的数字证书,客户端验证其合法性后生成随机数并用公钥加密发送给服务器,双方据此生成相同的对称密钥。后续通信使用对称加密确保高效性和安全性。同时,数字证书验证服务器身份,防止中间人攻击;哈希算法和数字签名确保数据完整性,防止篡改。整个流程保障了身份认证、数据加密和完整性保护。
深入解析图神经网络注意力机制:数学原理与可视化实现
本文深入解析了图神经网络(GNNs)中自注意力机制的内部运作原理,通过可视化和数学推导揭示其工作机制。文章采用“位置-转移图”概念框架,并使用NumPy实现代码示例,逐步拆解自注意力层的计算过程。文中详细展示了从节点特征矩阵、邻接矩阵到生成注意力权重的具体步骤,并通过四个类(GAL1至GAL4)模拟了整个计算流程。最终,结合实际PyTorch Geometric库中的代码,对比分析了核心逻辑,为理解GNN自注意力机制提供了清晰的学习路径。
174 7
深入解析图神经网络注意力机制:数学原理与可视化实现
深入解析Tiktokenizer:大语言模型中核心分词技术的原理与架构
Tiktokenizer 是一款现代分词工具,旨在高效、智能地将文本转换为机器可处理的离散单元(token)。它不仅超越了传统的空格分割和正则表达式匹配方法,还结合了上下文感知能力,适应复杂语言结构。Tiktokenizer 的核心特性包括自适应 token 分割、高效编码能力和出色的可扩展性,使其适用于从聊天机器人到大规模文本分析等多种应用场景。通过模块化设计,Tiktokenizer 确保了代码的可重用性和维护性,并在分词精度、处理效率和灵活性方面表现出色。此外,它支持多语言处理、表情符号识别和领域特定文本处理,能够应对各种复杂的文本输入需求。
58 6
深入解析Tiktokenizer:大语言模型中核心分词技术的原理与架构
阿里云服务器架构解析:从X86到高性能计算、异构计算等不同架构性能、适用场景及选择参考
当我们准备选购阿里云服务器时,阿里云提供了X86计算、ARM计算、GPU/FPGA/ASIC、弹性裸金属服务器以及高性能计算等多种架构,每种架构都有其独特的特点和适用场景。本文将详细解析这些架构的区别,探讨它们的主要特点和适用场景,并为用户提供选择云服务器架构的全面指南。
地铁站内导航系统解决方案:技术架构与核心功能设计解析
本文旨在分享一套地铁站内导航系统技术方案,通过蓝牙Beacon技术与AI算法的结合,解决传统导航定位不准确、路径规划不合理等问题,提升乘客出行体验,同时为地铁运营商提供数据支持与增值服务。 如需获取校地铁站内智能导航系统方案文档可前往文章最下方获取,如有项目合作及技术交流欢迎私信我们哦~
36 1
分片上传技术全解析:原理、优势与应用(含简单实现源码)
分片上传通过将大文件分割成多个小的片段或块,然后并行或顺序地上传这些片段,从而提高上传效率和可靠性,特别适用于大文件的上传场景,尤其是在网络环境不佳时,分片上传能有效提高上传体验。 博客不应该只有代码和解决方案,重点应该在于给出解决方案的同时分享思维模式,只有思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
45 张图深度解析 Netty 架构与原理(一)
作为一个学 Java 的,如果没有研究过 Netty,那么你对 Java 语言的使用和理解仅仅停留在表面水平,会点 SSH 写几个 MVC,访问数据库和缓存,这些只是初等 Java 程序员干的事。如果你要进阶,想了解 Java 服务器的深层高阶知识,Netty 绝对是一个必须要过的门槛。 接下来我们会学习一个 Netty 系列教程,Netty 系列由「架构与原理」,「源码」,「架构」三部分组成,今天我们先来看看第一部分:Netty 架构与原理初探,大纲如下:
911 0
45 张图深度解析 Netty 架构与原理(一)
45 张图深度解析 Netty 架构与原理(五)
作为一个学 Java 的,如果没有研究过 Netty,那么你对 Java 语言的使用和理解仅仅停留在表面水平,会点 SSH 写几个 MVC,访问数据库和缓存,这些只是初等 Java 程序员干的事。如果你要进阶,想了解 Java 服务器的深层高阶知识,Netty 绝对是一个必须要过的门槛。 接下来我们会学习一个 Netty 系列教程,Netty 系列由「架构与原理」,「源码」,「架构」三部分组成,今天我们先来看看第一部分:Netty 架构与原理初探,大纲如下:
433 0
45 张图深度解析 Netty 架构与原理(五)
45 张图深度解析 Netty 架构与原理(四)
作为一个学 Java 的,如果没有研究过 Netty,那么你对 Java 语言的使用和理解仅仅停留在表面水平,会点 SSH 写几个 MVC,访问数据库和缓存,这些只是初等 Java 程序员干的事。如果你要进阶,想了解 Java 服务器的深层高阶知识,Netty 绝对是一个必须要过的门槛。 接下来我们会学习一个 Netty 系列教程,Netty 系列由「架构与原理」,「源码」,「架构」三部分组成,今天我们先来看看第一部分:Netty 架构与原理初探,大纲如下:
519 0
45 张图深度解析 Netty 架构与原理(四)
45 张图深度解析 Netty 架构与原理(三)
作为一个学 Java 的,如果没有研究过 Netty,那么你对 Java 语言的使用和理解仅仅停留在表面水平,会点 SSH 写几个 MVC,访问数据库和缓存,这些只是初等 Java 程序员干的事。如果你要进阶,想了解 Java 服务器的深层高阶知识,Netty 绝对是一个必须要过的门槛。 接下来我们会学习一个 Netty 系列教程,Netty 系列由「架构与原理」,「源码」,「架构」三部分组成,今天我们先来看看第一部分:Netty 架构与原理初探,大纲如下:
1232 0
45 张图深度解析 Netty 架构与原理(三)

推荐镜像

更多