【数据挖掘】神经网络简介 ( 有向图本质 | 拓扑结构 | 连接方式 | 学习规则 | 分类 | 深度学习 | 机器学习 )(二)

简介: 【数据挖掘】神经网络简介 ( 有向图本质 | 拓扑结构 | 连接方式 | 学习规则 | 分类 | 深度学习 | 机器学习 )(二)

VII . 深度学习 简介


1 . 深度学习 : 在 多层神经网络上 , 解决图像 , 文本 , 等分类问题的 机器学习 算法集合 ;



2 . 深度学习 与 神经网络 : 深度学习属于神经网络范畴 , 但 深度学习 与 神经网络 实践应用 上略有不同 , 深度学习的目的是进行 特征学习 , 通过 分层网络 获取不同层次的 特征信息 , 以此来替代人工的相关工作 ;



3 . 深度学习应用场景 :



① 分类阶段 : 分类过程分为两个阶段 , 学习阶段 , 预测阶段 ;


② 特征工程 : 学习阶段 , 又分为 特征工程阶段 和 模型建立阶段 , 这里的特征工程阶段需要人工将特征提取出来 ;


③ 深度学习应用 : 深度学习 就是在 学习阶段 的 特征工程阶段 , 使用机器来完成该阶段的工作 ;




VIII . 机器学习 简介


机器学习简介 :



① 机器学习算法核心 : 抽取出样本特征后 , 然后使用算法为这些特征赋予权值 , 然后针对这些权值进行优化 ;


② 如 : 支持向量机 , 最终需要优化一个超平面 , 这个超平面表达成 w x + b = 0 wx + b = 0wx+b=0 , 其中的 w ww 和 b bb 两个参数就可以看做权值 , 最终目的是优化这两个权值 ; 其中 x xx 就是特征向量 , w ww 就是该特征的权重 ;


③ 机器学习 需要人参与 : 机器学习 中 , 样本的特征需要人工 设计 , 抽取 , 并且这些特征需要手工输入 ;


④ 与深度学习联系 : 深度学习 可以看做 机器学习 的 子领域 ;


⑤ 与深度学习区别 : 传统的 机器学习 的特征工程是靠人工完成 , 深度学习 中的特征工程靠手动完成 ;




IX . 深度学习 与 机器学习 建模对比


1 . 机器学习建模 : 机器学习 建模阶段 , 有两个步骤 , 特征工程 , 学习算法 ;



① 特征工程 ( 人工完成 ) : 传统机器学习中 , 特征工程需要手工抽取样本特征 , 需要精通该领域的专家才能完成该工作 ;


② 学习算法 ( 计算机完成 ) : 将特征抽取出来 , 优化这个特征的权值 ( 参数 ) 即可 ;



2 . 深度学习建模 : 深度学习 的建模阶段 , 全部靠计算机完成 , 人工不用干预 ;



① 特征抽取 : 靠算法完成 ; 从 音频 , 图像 , 文本 , 中抽取特征 ;


② 性能对比 : 深度学习 自动化抽取特征 , 优于机器学习 手工抽取特征 ;




X . 深度学习 与 机器学习 性能对比


1 . 机器学习的弊端 : 手工抽取的特征太过于具体 , 有一些隐含的深层次的特征被忽略掉了 , 抽取的特征不完整 , 另外还要花很长时间设计和验证这些特征 ;


如 : 先抽取一批特征 , 然后使用机器学习算法 使用 这些特征 创建模型 , 测试模型看预测的额准确性 , 如果预测效果不好 , 在选取其它特征组合 , 继续建立模型测试 ;



2 . 深度学习 优势 : 摆脱了人工限制 , 提供了 灵活的 , 通用的 学习框架 ;



① 不易理解 : 使用 深度学习 抽取的特征 , 不容易解释 , 从输入数据中获取向量 , 这些向量的含义未知 , 不易理解 ;


② 适应性强 : 但这些特征保留了很多深层次的信息 , 适应性很强 ;


③ 信息层次 : 其由表面的 , 语义层次的信息 , 转换到了更深层次的信息 ;


④ 学习速度快 : 相对于手工抽取特征 , 学习抽取特征的过程很快 ;


⑤ 学习场景 : 深度学习既可以用于 有监督学习 , 也可以用于 无监督学习 ;


目录
相关文章
|
3天前
|
机器学习/深度学习 并行计算 算法
MATLAB|【免费】概率神经网络的分类预测--基于PNN的变压器故障诊断
MATLAB|【免费】概率神经网络的分类预测--基于PNN的变压器故障诊断
|
3天前
|
机器学习/深度学习 算法 数据挖掘
【机器学习】各大模型原理简介
【机器学习】各大模型原理简介
|
11天前
|
机器学习/深度学习 分布式计算 物联网
【Python机器学习专栏】联邦学习:保护隐私的机器学习新趋势
【4月更文挑战第30天】联邦学习是保障数据隐私的分布式机器学习方法,允许设备在本地训练数据并仅共享模型,保护用户隐私。其优势包括数据隐私、分布式计算和模型泛化。应用于医疗、金融和物联网等领域,未来将发展更高效的数据隐私保护、提升可解释性和可靠性的,并与其他技术融合,为机器学习带来新机遇。
|
11天前
|
机器学习/深度学习 自然语言处理 搜索推荐
【Python机器学习专栏】迁移学习在机器学习中的应用
【4月更文挑战第30天】迁移学习是利用已有知识解决新问题的机器学习方法,尤其在数据稀缺或资源有限时展现优势。本文介绍了迁移学习的基本概念,包括源域和目标域,并探讨了其在图像识别、自然语言处理和推荐系统的应用。在Python中,可使用Keras或TensorFlow实现迁移学习,如示例所示,通过预训练的VGG16模型进行图像识别。迁移学习提高了学习效率和性能,随着技术发展,其应用前景广阔。
|
11天前
|
机器学习/深度学习 算法 前端开发
【Python机器学习专栏】集成学习中的Bagging与Boosting
【4月更文挑战第30天】本文介绍了集成学习中的两种主要策略:Bagging和Boosting。Bagging通过自助采样构建多个基学习器并以投票或平均法集成,降低模型方差,增强稳定性。在Python中可使用`BaggingClassifier`实现。而Boosting是串行学习,不断调整基学习器权重以优化拟合,适合弱学习器。Python中可利用`AdaBoostClassifier`等实现。示例代码展示了如何在实践中运用这两种方法。
|
11天前
|
机器学习/深度学习 PyTorch TensorFlow
【Python机器学习专栏】循环神经网络(RNN)与LSTM详解
【4月更文挑战第30天】本文探讨了处理序列数据的关键模型——循环神经网络(RNN)及其优化版长短期记忆网络(LSTM)。RNN利用循环结构处理序列依赖,但遭遇梯度消失/爆炸问题。LSTM通过门控机制解决了这一问题,有效捕捉长距离依赖。在Python中,可使用深度学习框架如PyTorch实现LSTM。示例代码展示了如何定义和初始化一个简单的LSTM网络结构,强调了RNN和LSTM在序列任务中的应用价值。
|
11天前
|
机器学习/深度学习 PyTorch TensorFlow
【Python机器学习专栏】卷积神经网络(CNN)的原理与应用
【4月更文挑战第30天】本文介绍了卷积神经网络(CNN)的基本原理和结构组成,包括卷积层、激活函数、池化层和全连接层。CNN在图像识别等领域表现出色,其层次结构能逐步提取特征。在Python中,可利用TensorFlow或PyTorch构建CNN模型,示例代码展示了使用TensorFlow Keras API创建简单CNN的过程。CNN作为强大深度学习模型,未来仍有广阔发展空间。
|
11天前
|
机器学习/深度学习 自然语言处理 语音技术
【Python 机器学习专栏】Python 深度学习入门:神经网络基础
【4月更文挑战第30天】本文介绍了Python在深度学习中应用于神经网络的基础知识,包括神经网络概念、基本结构、训练过程,以及Python中的深度学习库TensorFlow和PyTorch。通过示例展示了如何使用Python实现神经网络,并提及优化技巧如正则化和Dropout。最后,概述了神经网络在图像识别、语音识别和自然语言处理等领域的应用,并强调掌握这些知识对深度学习的重要性。随着技术进步,神经网络的应用将持续扩展,期待更多创新。
|
11天前
|
机器学习/深度学习 算法 数据挖掘
【Python机器学习专栏】关联规则学习:Apriori算法详解
【4月更文挑战第30天】Apriori算法是一种用于关联规则学习的经典算法,尤其适用于购物篮分析,以发现商品间的购买关联。该算法基于支持度和置信度指标,通过迭代生成频繁项集并提取满足阈值的规则。Python中可借助mlxtend库实现Apriori,例如处理购物篮数据,设置支持度和置信度阈值,找出相关规则。
|
11天前
|
机器学习/深度学习 算法 前端开发
【Python机器学习专栏】集成学习算法的原理与应用
【4月更文挑战第30天】集成学习通过组合多个基学习器提升预测准确性,广泛应用于分类、回归等问题。主要步骤包括生成基学习器、训练和结合预测结果。算法类型有Bagging(如随机森林)、Boosting(如AdaBoost)和Stacking。Python中可使用scikit-learn实现,如示例代码展示的随机森林分类。集成学习能降低模型方差,缓解过拟合,提高预测性能。

热门文章

最新文章