【数据挖掘】神经网络简介 ( 有向图本质 | 拓扑结构 | 连接方式 | 学习规则 | 分类 | 深度学习 | 机器学习 )(二)

简介: 【数据挖掘】神经网络简介 ( 有向图本质 | 拓扑结构 | 连接方式 | 学习规则 | 分类 | 深度学习 | 机器学习 )(二)

VII . 深度学习 简介


1 . 深度学习 : 在 多层神经网络上 , 解决图像 , 文本 , 等分类问题的 机器学习 算法集合 ;



2 . 深度学习 与 神经网络 : 深度学习属于神经网络范畴 , 但 深度学习 与 神经网络 实践应用 上略有不同 , 深度学习的目的是进行 特征学习 , 通过 分层网络 获取不同层次的 特征信息 , 以此来替代人工的相关工作 ;



3 . 深度学习应用场景 :



① 分类阶段 : 分类过程分为两个阶段 , 学习阶段 , 预测阶段 ;


② 特征工程 : 学习阶段 , 又分为 特征工程阶段 和 模型建立阶段 , 这里的特征工程阶段需要人工将特征提取出来 ;


③ 深度学习应用 : 深度学习 就是在 学习阶段 的 特征工程阶段 , 使用机器来完成该阶段的工作 ;




VIII . 机器学习 简介


机器学习简介 :



① 机器学习算法核心 : 抽取出样本特征后 , 然后使用算法为这些特征赋予权值 , 然后针对这些权值进行优化 ;


② 如 : 支持向量机 , 最终需要优化一个超平面 , 这个超平面表达成 w x + b = 0 wx + b = 0wx+b=0 , 其中的 w ww 和 b bb 两个参数就可以看做权值 , 最终目的是优化这两个权值 ; 其中 x xx 就是特征向量 , w ww 就是该特征的权重 ;


③ 机器学习 需要人参与 : 机器学习 中 , 样本的特征需要人工 设计 , 抽取 , 并且这些特征需要手工输入 ;


④ 与深度学习联系 : 深度学习 可以看做 机器学习 的 子领域 ;


⑤ 与深度学习区别 : 传统的 机器学习 的特征工程是靠人工完成 , 深度学习 中的特征工程靠手动完成 ;




IX . 深度学习 与 机器学习 建模对比


1 . 机器学习建模 : 机器学习 建模阶段 , 有两个步骤 , 特征工程 , 学习算法 ;



① 特征工程 ( 人工完成 ) : 传统机器学习中 , 特征工程需要手工抽取样本特征 , 需要精通该领域的专家才能完成该工作 ;


② 学习算法 ( 计算机完成 ) : 将特征抽取出来 , 优化这个特征的权值 ( 参数 ) 即可 ;



2 . 深度学习建模 : 深度学习 的建模阶段 , 全部靠计算机完成 , 人工不用干预 ;



① 特征抽取 : 靠算法完成 ; 从 音频 , 图像 , 文本 , 中抽取特征 ;


② 性能对比 : 深度学习 自动化抽取特征 , 优于机器学习 手工抽取特征 ;




X . 深度学习 与 机器学习 性能对比


1 . 机器学习的弊端 : 手工抽取的特征太过于具体 , 有一些隐含的深层次的特征被忽略掉了 , 抽取的特征不完整 , 另外还要花很长时间设计和验证这些特征 ;


如 : 先抽取一批特征 , 然后使用机器学习算法 使用 这些特征 创建模型 , 测试模型看预测的额准确性 , 如果预测效果不好 , 在选取其它特征组合 , 继续建立模型测试 ;



2 . 深度学习 优势 : 摆脱了人工限制 , 提供了 灵活的 , 通用的 学习框架 ;



① 不易理解 : 使用 深度学习 抽取的特征 , 不容易解释 , 从输入数据中获取向量 , 这些向量的含义未知 , 不易理解 ;


② 适应性强 : 但这些特征保留了很多深层次的信息 , 适应性很强 ;


③ 信息层次 : 其由表面的 , 语义层次的信息 , 转换到了更深层次的信息 ;


④ 学习速度快 : 相对于手工抽取特征 , 学习抽取特征的过程很快 ;


⑤ 学习场景 : 深度学习既可以用于 有监督学习 , 也可以用于 无监督学习 ;


目录
相关文章
|
1月前
|
机器学习/深度学习 自然语言处理 语音技术
Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧
本文介绍了Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧,并通过TensorFlow和PyTorch等库展示了实现神经网络的具体示例,涵盖图像识别、语音识别等多个应用场景。
54 8
|
4月前
|
机器学习/深度学习 资源调度 自然语言处理
不同类型的循环神经网络结构
【8月更文挑战第16天】
57 0
|
1月前
|
机器学习/深度学习 人工智能 数据挖掘
打破传统:机器学习与神经网络获2024年诺贝尔物理学奖引发的思考
诺贝尔物理学奖首次授予机器学习与神经网络领域,标志该技术在物理学研究中的重要地位。本文探讨了这一决定对物理学研究的深远影响,包括数据分析、理论物理突破及未来科研方向的启示,同时分析了其对学术跨界合作与全球科研产业的影响。
54 4
|
1月前
|
机器学习/深度学习 数据采集 算法
机器学习在医疗诊断中的前沿应用,包括神经网络、决策树和支持向量机等方法,及其在医学影像、疾病预测和基因数据分析中的具体应用
医疗诊断是医学的核心,其准确性和效率至关重要。本文探讨了机器学习在医疗诊断中的前沿应用,包括神经网络、决策树和支持向量机等方法,及其在医学影像、疾病预测和基因数据分析中的具体应用。文章还讨论了Python在构建机器学习模型中的作用,面临的挑战及应对策略,并展望了未来的发展趋势。
122 1
|
1月前
|
机器学习/深度学习 自然语言处理 算法
深入理解机器学习算法:从线性回归到神经网络
深入理解机器学习算法:从线性回归到神经网络
|
3月前
|
机器学习/深度学习 算法 TensorFlow
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
交通标志识别系统。本系统使用Python作为主要编程语言,在交通标志图像识别功能实现中,基于TensorFlow搭建卷积神经网络算法模型,通过对收集到的58种常见的交通标志图像作为数据集,进行迭代训练最后得到一个识别精度较高的模型文件,然后保存为本地的h5格式文件。再使用Django开发Web网页端操作界面,实现用户上传一张交通标志图片,识别其名称。
129 6
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
|
2月前
|
机器学习/深度学习 人工智能 算法
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集('矮花叶病', '健康', '灰斑病一般', '灰斑病严重', '锈病一般', '锈病严重', '叶斑病一般', '叶斑病严重'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。再使用Django搭建Web网页操作平台,实现用户上传一张玉米病害图片识别其名称。
78 0
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
|
2月前
|
机器学习/深度学习 算法
神经网络的结构与功能
神经网络是一种广泛应用于机器学习和深度学习的模型,旨在模拟人类大脑的信息处理方式。它们由多层不同类型的节点或“神经元”组成,每层都有特定的功能和责任。
88 0
|
2月前
|
机器学习/深度学习 人工智能 算法
#如何看待诺贝尔物理学奖颁给了机器学习与神经网络?#
2024年诺贝尔物理学奖首次颁发给机器学习与神经网络领域的研究者,标志着这一技术对物理学及多领域应用的深远影响。机器学习和神经网络不仅在生产、金融、医疗等行业展现出高效实用性,还在物理学研究中发挥了重要作用,如数据分析、模型优化和物理量预测等,促进了物理学与人工智能的深度融合与发展。
39 0
|
2月前
|
机器学习/深度学习 算法
【机器学习】揭秘反向传播:深度学习中神经网络训练的奥秘
【机器学习】揭秘反向传播:深度学习中神经网络训练的奥秘

热门文章

最新文章