【Java 网络编程】TCP 数据传输示例 ( 客户端参数设置 | 服务器端参数设置 | ByteBuffer 存放读取数据类型 )

本文涉及的产品
数据传输服务 DTS,同步至DuckDB 3个月
简介: 【Java 网络编程】TCP 数据传输示例 ( 客户端参数设置 | 服务器端参数设置 | ByteBuffer 存放读取数据类型 )

文章目录

I 客户端代码示例

II 服务器端代码示例

III 运行结果



I 客户端代码示例


import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.net.Inet4Address;
import java.net.InetSocketAddress;
import java.net.Socket;
import java.nio.ByteBuffer;
/**
 * TCP 客户端
 */
public class Client {
    public static void main(String[] args) {
        try {
            //I. 创建 Socket 对象并绑定本地端口
            //1. 创建空的 Socket 对象 , 方便之后设置参数
            Socket socket = new Socket();
            //2. 绑定本地端口
            socket.bind(new InetSocketAddress(Inet4Address.getLocalHost(), 8887));
            System.out.println("客户端 Socket 创建完毕");
            //II. 设置 Socket 对象参数 , 注意这些参数只能在客户端没有连接服务器的时候设置 , 连接服务器之后设置是无效的
            //1. 设置从 Socket 对象输入流中读取数据的阻塞等待超时时间
            //      当与 Socket 对象关联的 InputStream 输入流执行 read() 操作时 , 其阻塞时间为这个超时时间
            //      如果超过了该时间还没有收到任何数据 , 就会抛出异常
            socket.setSoTimeout(3000);
            //2. 设置是否可以复用 Socket 绑定的地址和端口号
            //      Socket 连接在建立时 , 会使用之前绑定本地的 IP 地址和端口号
            //      这个端口号在使用之后 , 2 分钟之内不允许再次使用
            //      进行了该设置之后 , 可以在连接关闭之后 , 马上使用该本地 IP 地址和端口号
            socket.setReuseAddress(true);
            //3. 设置是否开启 Nagle 算法 , Nagle 算法会导致多次发送的少量数据合并 , 即沾包情况出现
            //      在需要低延迟传输的情况下是需要关闭该算法的 , 该算法会导致数据沾包情况出现
            socket.setTcpNoDelay(true);
            //4. 在长时间 ( 2 小时 ) 没有数据交互 , 是否需要发送心跳包确认连接
            socket.setKeepAlive(true);
            //5. 调用 Socket 对象的 close 方法之后的处理方式
            //   1> 默认情况 : false , 0
            //      如果 boolean on 设置成false , 不处理连接的缓存数据 , 调用 close 会立刻关闭连接
            //      系统底层会操作输出流发送剩余缓存数据 , 将缓冲区中的数据发送给连接对方
            //      如果设置 false 不会产生阻塞操作
            //   2> setSoLinger( true , 20 ) 情况 :
            //      如果设置 boolean on 参数为 true , int linger 参数设置一个大于等于 0 的参数
            //      那么在关闭的时候 , 阻塞 linger 毫秒 , 之后缓冲区如果还有数据 , 就会被丢弃
            //      直接向连接对方发送结束命令 , 无需经过超时等待
            //   3> setSoLinger( true , 0 ) 情况 :
            //      如果设置成 0 , 那么其后果是不阻塞 , 也不让系统接管输出流
            //      立刻丢弃缓冲区数据 , 向对方发送 RST 命令
            socket.setSoLinger(true, 10);
            //6. 设置紧急数据是否内敛 , 默认情况时 false 关闭的
            //      紧急数据 : 紧急数据是 Socket 对象通过调用 sendUrgentData 发送出去的数据
            //                该方法参数是一个 int 值 , 仅有最低的 8 位是有效的
            socket.setOOBInline(true);
            //7. 设置发送接收缓冲区大小
            socket.setReceiveBufferSize(64 * 1024 * 1024);
            socket.setSendBufferSize(64 * 1024 * 1024);
            //8. 设置性能参数 : ① 连接时长 , ② 最低延迟 , ③ 带宽
            //      设置的值不是具体的参数 , 而是连接的性能权重 , 对哪个性能要求比较高 ;
            //      上面的延迟和带宽的性能是互斥的 , 低延迟新能好 , 带宽性能就差
            socket.setPerformancePreferences(0, 2, 0);
            System.out.println("客户端 Socket 参数设置完毕");
            //III. 连接服务器
            //1. 连接到服务器端的 8888 端口 , 设置连接超时 3000 毫秒
            socket.connect(new InetSocketAddress(Inet4Address.getLocalHost(), 8888), 3000);
            System.out.println("客户端 Socket 连接服务器完毕");
            //IV. 数据发送与接收
            //1. 获取输出流和输入流
            OutputStream outputStream = socket.getOutputStream();
            InputStream inputStream = socket.getInputStream();
            //2. 使用 ByteBuffer 向 byte[] 数组中存储数据
            byte[] buffer = new byte[256];
            ByteBuffer byteBuffer = ByteBuffer.wrap(buffer);
            //3. 向数组写入 byte 类型数据
            byteBuffer.put((byte) 0x01);
            //4. 向数组中写入 short 类型数据
            byteBuffer.putShort((short) 1);
            //5. 向数组中写入 int 类型数据
            byteBuffer.putInt(1);
            //6. 向数组中写入 char 类型数据
            byteBuffer.putChar('a');
            //7. 向数组中写入 boolean 类型数据
            //      此处使用 byte 类型模拟 , true 为 1, false 为 0
            boolean bool = true;
            byteBuffer.put((byte) (bool ? 1 : 0));
            //8. 向数组中写入 long 类型数据
            byteBuffer.putLong((long)1);
            //9. 向数组中写入 float 类型数据
            byteBuffer.putFloat(3.14f);
            //10. 向数组中写入 double 类型数据
            byteBuffer.putDouble(3.14);
            //11. 向数组中写入 String 类型数据
            //      先把 String 字符串转为 byte[] 数组, 在放入 byteBuffer 中
            byteBuffer.put("Hello World".getBytes());
            //12. 将 byte[] 数据发送到服务器端
            outputStream.write(buffer, 0, byteBuffer.position() + 1);
            System.out.println("客户端 Socket 将各种类型数据发送到了服务器端");
            //13. 接收服务器端反馈的数据
            int readLen = inputStream.read(buffer);
            System.out.println("客户端 Socket 接收到服务器端数据 " + readLen + " 字节");
            //V. 释放资源
            //1. 关闭输入输出流
            outputStream.close();
            inputStream.close();
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
}




II 服务器端代码示例


import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.net.Inet4Address;
import java.net.InetSocketAddress;
import java.net.ServerSocket;
import java.net.Socket;
import java.nio.ByteBuffer;
/**
 * TCP 服务器端
 */
public class Server {
    public static void main(String[] args) {
        try {
            //I. 设置服务器套接字
            //1. 创建服务器端 , 注意创建一个空的服务器套接字 , 一遍后面设置更详细的参数
            ServerSocket serverSocket = new ServerSocket();
            System.out.println("服务器端端 ServerSocket 创建完毕");
            //2. 设置从 Socket 对象输入流中读取数据的阻塞等待超时时间
            //      当与 Socket 对象关联的 InputStream 输入流执行 read() 操作时 , 其阻塞时间为这个超时时间
            //      如果超过了该时间还没有收到任何数据 , 就会抛出异常
            serverSocket.setSoTimeout(30000);
            //3. 设置是否可以复用 Socket 绑定的地址和端口号
            //      Socket 连接在建立时 , 会使用之前绑定本地的 IP 地址和端口号
            //      这个端口号在使用之后 , 2 分钟之内不允许再次使用
            //      进行了该设置之后 , 可以在连接关闭之后 , 马上使用该本地 IP 地址和端口号
            serverSocket.setReuseAddress(true);
            //4. 设置发送接收缓冲区大小
            serverSocket.setReceiveBufferSize(64 * 1024 * 1024);
            //5. 设置性能参数 : ① 连接时长 , ② 最低延迟 , ③ 带宽
            //      设置的值不是具体的参数 , 而是连接的性能权重 , 对哪个性能要求比较高 ;
            //      上面的延迟和带宽的性能是互斥的 , 低延迟新能好 , 带宽性能就差
            serverSocket.setPerformancePreferences(0, 2, 0);
            System.out.println("服务器端端 ServerSocket 设置完毕");
            //6. 绑定本地端口 , 只有绑定了本地端口 , 服务器端套接字才能正式工作
            //      服务器端才算是正式创建完毕
            //      上面的设置一定要在绑定接口之前设置完毕 , 之后在设置 serverSocket 是无效的
            serverSocket.bind(new InetSocketAddress(Inet4Address.getLocalHost(), 8888), 88);
            System.out.println("服务器端端 ServerSocket 绑定 8888 端口完毕");
            //II. 等待服务器端连接
            //1. 服务器端阻塞 , 等待客户端连接服务器端的 8888 端口号
            Socket clientSocket = serverSocket.accept();
            //2. 创建客户端异步处理线程 , 处理服务器端与该客户端之间的交互 , 创建之后直接启动线程即可
            ClientHandler clientHandler = new ClientHandler(clientSocket);
            clientHandler.start();
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
    /**
     * 客户端异步处理线程
     *  每当有客户端连接服务器 , 就开启一个线程处理与该客户端之间的交互
     */
    private static class ClientHandler extends Thread {
        /**
         * 客户端线程
         */
        private Socket clientSocket;
        public ClientHandler(Socket clientSocket) {
            this.clientSocket = clientSocket;
        }
        @Override
        public void run() {
            super.run();
            System.out.println("客户端 : " + clientSocket.getInetAddress() + " 连接到服务器端");
            try {
                //I. 获取数据交互的输入流 , 输出流 , 及缓冲区
                //1. 从客户端 Socket 中获取与客户端进行数据交互的输入输出流
                OutputStream outputStream = clientSocket.getOutputStream();
                InputStream inputStream = clientSocket.getInputStream();
                //2. 从客户端读取数据 , 并使用 ByteBuffer 读取其中各种类型的数据
                byte[] buffer = new byte[256];
                int readCount = inputStream.read(buffer);
                ByteBuffer byteBuffer = ByteBuffer.wrap(buffer, 0, readCount);
                //II. 按照顺序读取存放的数据
                //注意 : 要按照存放的顺序读取
                //1. 读取 byte 类型数据
                byte var_byte = byteBuffer.get();
                System.out.println("① byte 类型数据 : " + var_byte);
                //2. 读取 short 类型数据
                short var_short = byteBuffer.getShort();
                System.out.println("② short 类型数据 : " + var_short);
                //3. 读取 int 类型数据
                int var_int = byteBuffer.getInt();
                System.out.println("③ int 类型数据 : " + var_int);
                //4. 读取 char 类型数据
                char var_char = byteBuffer.getChar();
                System.out.println("④ char 类型数据 : " + var_char);
                //5. 读取 short 类型数据
                boolean var_boolean = byteBuffer.get() == 1;
                System.out.println("⑤ boolean 类型数据 : " + var_boolean);
                //6. 读取 long 类型数据
                long var_long = byteBuffer.getLong();
                System.out.println("⑥ long 类型数据 : " + var_long);
                //7. 读取 float 类型数据
                float var_float = byteBuffer.getFloat();
                System.out.println("⑦ float 类型数据 : " + var_float);
                //8. 读取 double 类型数据
                double var_double = byteBuffer.getDouble();
                System.out.println("⑧ double 类型数据 : " + var_double);
                //9. 读取 short 类型数据
                int start = byteBuffer.position();
                String var_string = new String(buffer, start, readCount - start - 1);
                System.out.println("⑨ String 类型数据 : " + var_string);
                //III. 将接收的数据再发送回去, 并关闭连接
                outputStream.write(buffer, 0, readCount);
                outputStream.close();
                inputStream.close();
            } catch (IOException e) {
                e.printStackTrace();
            } finally {
                // 连接关闭
                try {
                    clientSocket.close();
                } catch (IOException e) {
                    e.printStackTrace();
                } finally {
                    System.out.println("客户端与服务器端交互完成");
                }
            }
        }
    }
}




III 运行结果


1. 先运行服务器端 :

服务器端端 ServerSocket 创建完毕
服务器端端 ServerSocket 设置完毕
服务器端端 ServerSocket 绑定 8888 端口完毕


2. 在运行客户端 :


客户端 Socket 创建完毕
客户端 Socket 参数设置完毕
客户端 Socket 连接服务器完毕
客户端 Socket 将各种类型数据发送到了服务器端
客户端 Socket 接收到服务器端数据 42 字节


3. 最终查看服务器端打印 :


服务器端端 ServerSocket 创建完毕
服务器端端 ServerSocket 设置完毕
服务器端端 ServerSocket 绑定 8888 端口完毕
客户端 : /192.168.87.2 连接到服务器端
① byte 类型数据 : 1
② short 类型数据 : 1
③ int 类型数据 : 1
④ char 类型数据 : a
⑤ boolean 类型数据 : true
⑥ long 类型数据 : 1
⑦ float 类型数据 : 3.14
⑧ double 类型数据 : 3.14
⑨ String 类型数据 : Hello World
客户端与服务器端交互完成
相关实践学习
如何在云端创建MySQL数据库
在云计算环境中,数据库服务的迁移和管理是一项关键任务。本场景将为您提供详细的步骤,以指导您在阿里云平台上创建并使用云服务器ECS、云数据库RDS、以及数据传输服务DTS。
Sqoop 企业级大数据迁移方案实战
Sqoop是一个用于在Hadoop和关系数据库服务器之间传输数据的工具。它用于从关系数据库(如MySQL,Oracle)导入数据到Hadoop HDFS,并从Hadoop文件系统导出到关系数据库。 本课程主要讲解了Sqoop的设计思想及原理、部署安装及配置、详细具体的使用方法技巧与实操案例、企业级任务管理等。结合日常工作实践,培养解决实际问题的能力。本课程由黑马程序员提供。
目录
相关文章
|
6月前
|
JSON 移动开发 网络协议
Java网络编程:Socket通信与HTTP客户端
本文全面讲解Java网络编程,涵盖TCP与UDP协议区别、Socket编程、HTTP客户端开发及实战案例,助你掌握实时通信、文件传输、聊天应用等场景,附性能优化与面试高频问题解析。
|
6月前
|
存储 弹性计算 网络协议
阿里云服务器ECS实例规格族是什么?不同规格CPU型号、处理器主频及网络性能参数均不同
阿里云ECS实例规格族是指具有不同性能特点和适用场景的实例类型集合。不同规格族如计算型c9i、通用算力型u1、经济型e等,在CPU型号、主频、网络性能、云盘IOPS等方面存在差异。即使CPU和内存配置相同,性能参数和价格也各不相同,适用于不同业务需求。
497 144
|
8月前
|
机器学习/深度学习 算法
PSO和GA优化BP神经网络参数
PSO和GA优化BP神经网络参数
246 5
|
4月前
|
JSON 网络协议 安全
【Java】(10)进程与线程的关系、Tread类;讲解基本线程安全、网络编程内容;JSON序列化与反序列化
几乎所有的操作系统都支持进程的概念,进程是处于运行过程中的程序,并且具有一定的独立功能,进程是系统进行资源分配和调度的一个独立单位一般而言,进程包含如下三个特征。独立性动态性并发性。
257 1
|
4月前
|
JSON 网络协议 安全
【Java基础】(1)进程与线程的关系、Tread类;讲解基本线程安全、网络编程内容;JSON序列化与反序列化
几乎所有的操作系统都支持进程的概念,进程是处于运行过程中的程序,并且具有一定的独立功能,进程是系统进行资源分配和调度的一个独立单位一般而言,进程包含如下三个特征。独立性动态性并发性。
269 1
|
4月前
|
机器学习/深度学习 分布式计算 Java
Java与图神经网络:构建企业级知识图谱与智能推理系统
图神经网络(GNN)作为处理非欧几里得数据的前沿技术,正成为企业知识管理和智能推理的核心引擎。本文深入探讨如何在Java生态中构建基于GNN的知识图谱系统,涵盖从图数据建模、GNN模型集成、分布式图计算到实时推理的全流程。通过具体的代码实现和架构设计,展示如何将先进的图神经网络技术融入传统Java企业应用,为构建下一代智能决策系统提供完整解决方案。
472 0
|
6月前
|
存储 弹性计算 网络协议
阿里云服务器ECS实例规格族详细介绍:计算型c9i、经济型e和通用算力u1实例CPU参数说明
阿里云ECS实例规格族包括计算型c9i、经济型e和通用算力型u1等,各自针对不同场景优化。不同规格族在CPU型号、主频、网络性能、云盘IOPS等方面存在差异,即使CPU内存相同,性能和价格也不同。
797 0
|
11月前
|
Java Linux 定位技术
Minecraft配置文件参数说明(JAVA服务器篇)
Minecraft JAVA版服务器启动后会生成server.properties配置文件,位于minecraft_server/根目录下。该文件包含多项关键设置,如游戏模式(gamemode)、最大玩家数(max-players)、难度(difficulty)等。此文档详细说明了各配置项的功能与默认值,帮助用户高效管理服务器环境。
2737 60
|
10月前
|
域名解析 SQL 网络协议
阿里云服务器国际站高防bgp服务器参数怎么看?服务器被攻击了怎么解决?
阿里云服务器国际站高防bgp服务器参数怎么看?服务器被攻击了怎么解决?
399 4
|
11月前
|
SQL 存储 数据库
KingBase服务器优化:详解Kylin参数配置。
通过适当的调整和优化这些关键参数,你的Kylin可以运行得更加流畅和高效。就像一个经过精心调校的赛车,无论是在赛道的直道还是弯道上,都能展现出卓越的性能。希望这次深入参数“操控盘”的旅行,能让你更好地理解和优化你的Kylin配置。记住,优化是一个持续的过程,不断地试验和改进,你的Kylin才能越来越强大。
235 20