使用linux系统(PC机)做路由转发

简介:

使用linux系统(PC机)做路由转发

1、网络拓扑

  网络拓扑如下所示,我们在这里用到了三台机子做实验,分别是①、④、⑦号机,使用①号机ping⑦号机,④号机作为路由转发。

  

 

2、错误的路由配置

  首先我们使用如下的配置方法,配置这三台机子的路由表:

  1)在①号机种配置如下,让目的网段是10.0.4.0/24的从eth1端口出去

  
  
  1. route add -net 10.0.4.0/24 dev eth1

  在①号机的查看路由表输入如下命令:

  
  
  1. route -n

  ①号机的路由表的结果如下:

   2)在⑦号机使用同样方法配置路由,结果如下:

   3)在4号机配置路由转发功能,即将/etc/sysctl.conf文件里面的net.ipv4.ip_forward的值置1:

   4)所有的配置已经完成,我们在①号机ping④号机

 
 
  
  
  1. ping 10.0.4.3
 
 

   结果如下,即ping 不通:

  
  
  1. PING 10.0.4.3 (10.0.4.3) 56(84) bytes of data.
  2. From 10.0.1.3 icmp_seq=2 Destination Host Unreachable
  3. From 10.0.1.3 icmp_seq=3 Destination Host Unreachable
  4. From 10.0.1.3 icmp_seq=4 Destination Host Unreachable
  5. From 10.0.1.3 icmp_seq=6 Destination Host Unreachable
  6. From 10.0.1.3 icmp_seq=7 Destination Host Unreachable
  7. From 10.0.1.3 icmp_seq=8 Destination Host Unreachable

  这里为了方便研究,把①号机的eth1配置放出来

  
  
  1. eth1 Link encap:Ethernet HWaddr 00:16:EC:AF:CB:CB
  2. inet addr:10.0.1.3 Bcast:10.255.255.255 Mask:255.255.255.0
  3. inet6 addr: fe80::216:ecff:feaf:cbcb/64 Scope:Link
  4. UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
  5. RX packets:4564 errors:0 dropped:0 overruns:0 frame:0
  6. TX packets:6688 errors:0 dropped:0 overruns:0 carrier:0
  7. collisions:0 txqueuelen:1000
  8. RX bytes:459463 (448.6 KiB) TX bytes:546633 (533.8 KiB)
  9. Interrupt:23 Base address:0x6000

  在①号机ping 的同时,我在④号机抓eth1包,结果如下:

  
  
  1. [root@h4~]# tcpdump -i eth1 -enn
  2. tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
  3. listening on eth1, link-type EN10MB (Ethernet), capture size 65535 bytes
  4. 15:26:44.388614 00:16:ec:af:cb:cb > ff:ff:ff:ff:ff:ff, ethertype ARP (0x0806), length 60: Request who-has 10.0.4.3 tell 10.0.1.3, length 46
  5. 15:26:45.391014 00:16:ec:af:cb:cb > ff:ff:ff:ff:ff:ff, ethertype ARP (0x0806), length 60: Request who-has 10.0.4.3 tell 10.0.1.3, length 46
  6. 15:26:47.387821 00:16:ec:af:cb:cb > ff:ff:ff:ff:ff:ff, ethertype ARP (0x0806), length 60: Request who-has 10.0.4.3 tell 10.0.1.3, length 46
  7. 15:26:48.391220 00:16:ec:af:cb:cb > ff:ff:ff:ff:ff:ff, ethertype ARP (0x0806), length 60: Request who-has 10.0.4.3 tell 10.0.1.3, length 46
  8. 15:26:49.392621 00:16:ec:af:cb:cb > ff:ff:ff:ff:ff:ff, ethertype ARP (0x0806), length 60: Request who-has 10.0.4.3 tell 10.0.1.3, length 46

   可见①号一直在寻找配有10.0.4.3 IP的机子的mac地址,即一直在发arp包。但是路由器(④号机)默认是不转发arp报文的,所有①号机永远也ping不通⑦号机。

 

3、正确的配置

  在①号机种配置路由,命令如下:

  
  
  1. route add -net 10.0.4.0/24 gw 10.0.1.2

  这时候①号机的路由表:

  
  
  1. [root@h1 ~]#
  2. [root@h1 ~]# route -n
  3. Kernel IP routing table
  4. Destination Gateway Genmask Flags Metric Ref Use Iface
  5. 10.0.4.0 10.0.1.2 255.255.255.0 UG 0 0 0 eth1
  6. 10.0.5.0 0.0.0.0 255.255.255.0 U 0 0 0 eth2
  7. 10.0.1.0 0.0.0.0 255.255.255.0 U 0 0 0 eth1
  8. 192.168.99.0 0.0.0.0 255.255.255.0 U 1 0 0 eth0
  9. 0.0.0.0 192.168.99.1 0.0.0.0 UG 0 0 0 eth0

  同样的方法配置⑦号机的路由表

  
  
  1. root@h7:~# route -n
  2. 内核 IP 路由表
  3. 目标 网关 子网掩码 标志 跃点 引用 使用 接口
  4. 0.0.0.0 192.168.99.1 0.0.0.0 UG 0 0 0 eth0
  5. 10.0.1.0 10.0.4.2 255.255.255.0 UG 0 0 0 eth1
  6. 10.0.4.0 0.0.0.0 255.255.255.0 U 1 0 0 eth1
  7. 10.0.7.0 0.0.0.0 255.255.255.0 U 1 0 0 eth2
  8. 192.168.99.0 0.0.0.0 255.255.255.0 U 1 0 0 eth0

  下面再进行ping测试,在①号机ping⑦号机,结果能够ping通。在这里我们问了方便分析,首先列出各网卡的MAC地址

  
  
  1. ①号机 eth1:HWaddr 00:16:EC:AF:CB:CB
  2. ④号机 eth1:HWaddr 40:61:86:32:8F:0B
  3. ④号机 eth4:HWaddr 40:61:86:32:8F:0E
  4. ⑦号机 eth1:HWaddr 00:25:90:93:40:79

  ④号机eth1抓包如下:

  
  
  1. [root@h4 ~]# tcpdump -i eth1 -enn
  2. tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
  3. listening on eth1, link-type EN10MB (Ethernet), capture size 65535 bytes
  4. 16:02:26.809445 00:16:ec:af:cb:cb > 40:61:86:32:8f:0b, ethertype IPv4 (0x0800), length 98: 10.0.1.3 > 10.0.4.3: ICMP echo request, id 8079, seq 1, length 64
  5. 16:02:26.810723 40:61:86:32:8f:0b > 00:16:ec:af:cb:cb, ethertype IPv4 (0x0800), length 98: 10.0.4.3 > 10.0.1.3: ICMP echo reply, id 8079, seq 1, length 64
  6. 16:02:27.811847 00:16:ec:af:cb:cb > 40:61:86:32:8f:0b, ethertype IPv4 (0x0800), length 98: 10.0.1.3 > 10.0.4.3: ICMP echo request, id 8079, seq 2, length 64
  7. 16:02:27.813136 40:61:86:32:8f:0b > 00:16:ec:af:cb:cb, ethertype IPv4 (0x0800), length 98: 10.0.4.3 > 10.0.1.3: ICMP echo reply, id 8079, seq 2, length 64
  8. 16:02:28.813248 00:16:ec:af:cb:cb > 40:61:86:32:8f:0b, ethertype IPv4 (0x0800), length 98: 10.0.1.3 > 10.0.4.3: ICMP echo request, id 8079, seq 3, length 64
  9. 16:02:28.814551 40:61:86:32:8f:0b > 00:16:ec:af:cb:cb, ethertype IPv4 (0x0800), length 98: 10.0.4.3 > 10.0.1.3: ICMP echo reply, id 8079, seq 3, length 64
  10. 16:02:29.814648 00:16:ec:af:cb:cb > 40:61:86:32:8f:0b, ethertype IPv4 (0x0800), length 98: 10.0.1.3 > 10.0.4.3: ICMP echo request, id 8079, seq 4, length 64

  ④号机eth4抓包如下:

  
  
  1. root@h4 ~]# tcpdump -i eth4 -enn
  2. tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
  3. listening on eth4, link-type EN10MB (Ethernet), capture size 65535 bytes
  4. 16:02:26.809460 40:61:86:32:8f:0e > 00:25:90:93:40:79, ethertype IPv4 (0x0800), length 98: 10.0.1.3 > 10.0.4.3: ICMP echo request, id 8079, seq 1, length 64
  5. 16:02:26.810715 00:25:90:93:40:79 > 40:61:86:32:8f:0e, ethertype IPv4 (0x0800), length 98: 10.0.4.3 > 10.0.1.3: ICMP echo reply, id 8079, seq 1, length 64
  6. 16:02:27.811853 40:61:86:32:8f:0e > 00:25:90:93:40:79, ethertype IPv4 (0x0800), length 98: 10.0.1.3 > 10.0.4.3: ICMP echo request, id 8079, seq 2, length 64
  7. 16:02:27.813130 00:25:90:93:40:79 > 40:61:86:32:8f:0e, ethertype IPv4 (0x0800), length 98: 10.0.4.3 > 10.0.1.3: ICMP echo reply, id 8079, seq 2, length 64
  8. 16:02:28.813255 40:61:86:32:8f:0e > 00:25:90:93:40:79, ethertype IPv4 (0x0800), length 98: 10.0.1.3 > 10.0.4.3: ICMP echo request, id 8079, seq 3, length 64
  9. 16:02:28.814545 00:25:90:93:40:79 > 40:61:86:32:8f:0e, ethertype IPv4 (0x0800), length 98: 10.0.4.3 > 10.0.1.3: ICMP echo reply, id 8079, seq 3, length 64

  ⑦号机eth1抓包如下:

  
  
  1. root@h7:~# tcpdump -i eth1 -enn
  2. tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
  3. listening on eth1, link-type EN10MB (Ethernet), capture size 65535 bytes
  4. 16:02:27.222853 40:61:86:32:8f:0e > 00:25:90:93:40:79, ethertype IPv4 (0x0800), length 98: 10.0.1.3 > 10.0.4.3: ICMP echo request, id 8079, seq 1, length 64
  5. 16:02:27.222867 00:25:90:93:40:79 > 40:61:86:32:8f:0e, ethertype IPv4 (0x0800), length 98: 10.0.4.3 > 10.0.1.3: ICMP echo reply, id 8079, seq 1, length 64
  6. 16:02:28.225226 40:61:86:32:8f:0e > 00:25:90:93:40:79, ethertype IPv4 (0x0800), length 98: 10.0.1.3 > 10.0.4.3: ICMP echo request, id 8079, seq 2, length 64
  7. 16:02:28.225237 00:25:90:93:40:79 > 40:61:86:32:8f:0e, ethertype IPv4 (0x0800), length 98: 10.0.4.3 > 10.0.1.3: ICMP echo reply, id 8079, seq 2, length 64
  8. 16:02:29.226638 40:61:86:32:8f:0e > 00:25:90:93:40:79, ethertype IPv4 (0x0800), length 98: 10.0.1.3 > 10.0.4.3: ICMP echo request, id 8079, seq 3, length 64
  9. 16:02:29.226649 00:25:90:93:40:79 > 40:61:86:32:8f:0e, ethertype IPv4 (0x0800), length 98: 10.0.4.3 > 10.0.1.3: ICMP echo reply, id 8079, seq 3, length 64
  10. 16:02:30.228059 40:61:86:32:8f:0e > 00:25:90:93:40:79, ethertype IPv4 (0x0800), length 98: 10.0.1.3 > 10.0.4.3: ICMP echo request, id 8079, seq 4, length 64

 

  从抓取的包中我们不难看出,①号机在ping ⑦号机时,由于其中路由表配置了通过四号机的eth1(10.0.1.2)地址,这个地址对应的mac①号机已经缓存了,所有没有进行arp广播就直接开 始发送ICMP包,并且目的ip是⑦号机,目的MAC是④号机的eth1的,之后在④号机路由中又将目的MAC变成了④号机的eth4的,目的ip不变, 回来的过程相仿。

 

4、结论

  由 于linux路由器默认不转发arp报文到,所有若像”错误的配置“那样配置路由,①号机一直处在询问目的MAC的阶段而无法让路由器④号机转发数据包, 所有我们可以通过”正确的配置“那样配置路由让①号机使用④号机eth1的MAC出去,然后再一步一步转发。或者通过”错误的配置“那样配置路由,然后在 ④号机中使用arp代理,从而让①号机获得⑦号机的MAC,从而从发送arp报文阶段到发送ICMP包阶段。

原文发布时间:2014-09-30

本文来自云栖合作伙伴“linux中国”

目录
相关文章
Linux系统中的cd命令:目录切换技巧
踏过千山,越过万水,人生就是一场不断前行的旅程,总充满了未知与挑战。然而,“cd”命令如同你的旅伴,会带你穿梭在如棋盘一般的文件系统中,探索每一处未知。希望你能从“cd”命令中找到乐趣,像是掌控了一种络新妙的魔法,去向未知进发,开始你的探索之旅。
66 24
Linux系统之su命令的基本使用
Linux系统之su命令的基本使用
40 1
Linux系统之su命令的基本使用
|
20天前
|
Linux系统资源管理:多角度查看内存使用情况。
要知道,透过内存管理的窗口,我们可以洞察到Linux系统运行的真实身姿,如同解剖学家透过微观镜,洞察生命的奥秘。记住,不要惧怕那些高深的命令和参数,他们只是你掌握系统"魔法棒"的钥匙,熟练掌握后,你就可以骄傲地说:Linux,我来了!
99 27
|
24天前
|
Linux系统ext4磁盘扩容实践指南
这个过程就像是给你的房子建一个新的储物间。你需要先找到空地(创建新的分区),然后建造储物间(格式化为ext4文件系统),最后将储物间添加到你的房子中(将新的分区添加到文件系统中)。完成这些步骤后,你就有了一个更大的储物空间。
99 10
|
1月前
|
Linux系统中如何查看CPU信息
本文介绍了查看CPU核心信息的方法,包括使用`lscpu`命令和读取`/proc/cpuinfo`文件。`lscpu`能快速提供逻辑CPU数量、物理核心数、插槽数等基本信息;而`/proc/cpuinfo`则包含更详细的配置数据,如核心ID和处理器编号。此外,还介绍了如何通过`lscpu`和`dmidecode`命令获取CPU型号、制造商及序列号,并解释了CPU频率与缓存大小的相关信息。最后,详细解析了`lscpu`命令输出的各项参数含义,帮助用户更好地理解CPU的具体配置。
123 8
深度体验阿里云系统控制台:SysOM 让 Linux 服务器监控变得如此简单
作为一名经历过无数个凌晨三点被服务器报警电话惊醒的运维工程师,我对监控工具有着近乎苛刻的要求。记得去年那次大型活动,我们的主站流量暴增,服务器内存莫名其妙地飙升到90%以上,却找不到原因。如果当时有一款像阿里云 SysOM 这样直观的监控工具,也许我就不用熬通宵排查问题了。今天,我想分享一下我使用 SysOM 的亲身体验,特别是它那令人印象深刻的内存诊断功能。
|
25天前
|
微服务2——MongoDB单机部署4——Linux系统中的安装启动和连接
本节主要介绍了在Linux系统中安装、启动和连接MongoDB的详细步骤。首先从官网下载MongoDB压缩包并解压至指定目录,接着创建数据和日志存储目录,并配置`mongod.conf`文件以设定日志路径、数据存储路径及绑定IP等参数。之后通过配置文件启动MongoDB服务,并使用`mongo`命令或Compass工具进行连接测试。此外,还提供了防火墙配置建议以及服务停止的两种方法:快速关闭(直接杀死进程)和标准关闭(通过客户端命令安全关闭)。最后补充了数据损坏时的修复操作,确保数据库的稳定运行。
71 0
安装【银河麒麟V10】linux系统--并挂载镜像
安装【银河麒麟V10】linux系统--并挂载镜像
3323 0
卸载、下载、安装mysql(Linux系统centos7)
卸载、下载、安装mysql(Linux系统centos7)
300 0
|
6月前
|
手把手教会你安装Linux系统
手把手教会你安装Linux系统
138 0
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等