【小Y学算法】⚡️每日LeetCode打卡⚡️——32. 路径总和

简介: 📢前言🌲原题样例:路径总和🌻C#方法:递归🌻Java 方法一:广度优先搜索🌻Java 方法二:递归💬总结🚀往期优质文章分享

📢前言

🚀 算法题 🚀

🌲 每天打卡一道算法题,既是一个学习过程,又是一个分享的过程😜

🌲 提示:本专栏解题 编程语言一律使用 C# 和 Java 两种进行解题

🌲 要保持一个每天都在学习的状态,让我们一起努力成为算法大神吧🧐!

🌲 今天是力扣算法题持续打卡第32天🎈!

🚀 算法题 🚀

🌲原题样例:路径总和

给你二叉树的根节点root和一个表示目标和的整数 targetSum,判断该树中是否存在 根节点到叶子节点 的路径,这条路径上所有节点值相加等于目标和targetSum 。


叶子节点 是指没有子节点的节点。


示例 1:

image.png

输入:root = [5,4,8,11,null,13,4,7,2,null,null,null,1], targetSum = 22
输出:true

示例 2:

image.png

输入:root = [1,2,3], targetSum = 5
输出:false
示例 3:
输入:root = [1,2], targetSum = 0
输出:false

提示:


树中节点的数目在范围 [0, 5000] 内

-1000 <= Node.val <= 1000

-1000 <= targetSum <= 1000

🌻C#方法:递归

观察要求我们完成的函数,我们可以归纳出它的功能:询问是否存在从当前节点root到叶子节点的路径,满足其路径和为 sum。


假定从根节点到当前节点的值之和为 val,我们可以将这个大问题转化为一个小问题:是否存在从当前节点的子节点到叶子的路径,满足其路径和为 sum - val。


不难发现这满足递归的性质,若当前节点就是叶子节点,那么我们直接判断 sum 是否等于 val 即可(因为路径和已经确定,就是当前节点的值,我们只需要判断该路径和是否满足条件)。若当前节点不是叶子节点,我们只需要递归地询问它的子节点是否能满足条件即可。


思路解析


代码:

public class Solution {
    public bool HasPathSum(TreeNode root, int sum) {
//出口 
 if (root == null)
            {
                return false;
            }
            if (root.left == null && root.right == null)
            {
                return root.val == sum;
            }
            return HasPathSum(root.left, sum - root.val) || HasPathSum(root.right, sum - root.val);
    }
}

执行结果

通过
时间复杂度:O(n),其中 N 是树的节点数。
空间复杂度:O(H),其中 H 是树的高度

复杂度分析

时间复杂度:O( n^2 ),其中 n 是数组的长度。每个数字只访问一次。
空间复杂度:O( n ),其中 n 是数组的长度。空间复杂度不考虑返回值,因此空间复杂度主要取决于递归栈的深度,递归栈的深度是O(logn)

🌻Java 方法一:广度优先搜索

思路解析

首先我们可以想到使用广度优先搜索的方式,记录从根节点到当前节点的路径和,以防止重复计算。

这样我们使用两个队列,分别存储将要遍历的节点,以及根节点到这些节点的路径和即可。

代码:

class Solution {
    public boolean hasPathSum(TreeNode root, int sum) {
        if (root == null) {
            return false;
        }
        Queue<TreeNode> queNode = new LinkedList<TreeNode>();
        Queue<Integer> queVal = new LinkedList<Integer>();
        queNode.offer(root);
        queVal.offer(root.val);
        while (!queNode.isEmpty()) {
            TreeNode now = queNode.poll();
            int temp = queVal.poll();
            if (now.left == null && now.right == null) {
                if (temp == sum) {
                    return true;
                }
                continue;
            }
            if (now.left != null) {
                queNode.offer(now.left);
                queVal.offer(now.left.val + temp);
            }
            if (now.right != null) {
                queNode.offer(now.right);
                queVal.offer(now.right.val + temp);
            }
        }
        return false;
    }
}

执行结果

通过
执行用时:2 ms,在所有 Java  提交中击败了10.29%的用户
内存消耗:38.3 MB,在所有 Java 提交中击败了67.32%的用户

复杂度分析

时间复杂度:O( n ),其中 N 是树的节点数。
空间复杂度:O( n ),其中 N 是树的节点数。

🌻Java 方法二:递归

思路解析


观察要求我们完成的函数,我们可以归纳出它的功能:询问是否存在从当前节点root到叶子节点的路径,满足其路径和为 sum。


假定从根节点到当前节点的值之和为 val,我们可以将这个大问题转化为一个小问题:是否存在从当前节点的子节点到叶子的路径,满足其路径和为 sum - val。


不难发现这满足递归的性质,若当前节点就是叶子节点,那么我们直接判断 sum 是否等于 val 即可(因为路径和已经确定,就是当前节点的值,我们只需要判断该路径和是否满足条件)。若当前节点不是叶子节点,我们只需要递归地询问它的子节点是否能满足条件即可。


代码:

class Solution {
    public void merge(int[] nums1, int m, int[] nums2, int n) {
        int p1 = 0, p2 = 0;
        int[] sorted = new int[m + n];
        int cur;
        while (p1 < m || p2 < n) {
            if (p1 == m) {
                cur = nums2[p2++];
            } else if (p2 == n) {
                cur = nums1[p1++];
            } else if (nums1[p1] < nums2[p2]) {
                cur = nums1[p1++];
            } else {
                cur = nums2[p2++];
            }
            sorted[p1 + p2 - 1] = cur;
        }
        for (int i = 0; i != m + n; ++i) {
            nums1[i] = sorted[i];
        }
    }
}

执行结果

通过
执行用时:0 ms,在所有 Java  提交中击败了100.00%的用户
内存消耗:38.5 MB,在所有 Java 提交中击败了18.28%的用户

复杂度分析

时间复杂度:O(n),其中 N 是树的节点数。
空间复杂度:O(H),其中 H 是树的高度

💬总结

  • 今天是力扣算法题打卡的第三十二天!
  • 文章采用 C#Java 两种编程语言进行解题
  • 一些方法也是参考力扣大神写的,也是边学习边分享,再次感谢算法大佬们
相关文章
|
1月前
【LeetCode 35】112.路径总和
【LeetCode 35】112.路径总和
24 0
|
1月前
【LeetCode 36】113.路径总和II
【LeetCode 36】113.路径总和II
28 0
|
1月前
|
算法
Leetcode 初级算法 --- 数组篇
Leetcode 初级算法 --- 数组篇
38 0
|
11天前
|
存储 算法 Java
leetcode算法题-有效的括号(简单)
【11月更文挑战第5天】本文介绍了 LeetCode 上“有效的括号”这道题的解法。题目要求判断一个只包含括号字符的字符串是否有效。有效字符串需满足左括号必须用相同类型的右括号闭合,并且左括号必须以正确的顺序闭合。解题思路是使用栈数据结构,遍历字符串时将左括号压入栈中,遇到右括号时检查栈顶元素是否匹配。最后根据栈是否为空来判断字符串中的括号是否有效。示例代码包括 Python 和 Java 版本。
|
1月前
|
算法
每日一道算法题(Leetcode 20)
每日一道算法题(Leetcode 20)
23 2
|
1月前
|
数据采集 监控 安全
厂区地图导航制作:GIS技术与路径导航算法融合
在智能化、数字化时代,GIS技术为厂区的运营管理带来了革命性变化。本文探讨了如何利用GIS技术,通过数据采集、地图绘制、路径规划、位置定位和信息查询等功能,打造高效、精准的智能厂区地图导航系统,提升企业的竞争力和管理水平。
47 0
厂区地图导航制作:GIS技术与路径导航算法融合
|
1月前
【LeetCode 34】257.二叉树的所有路径
【LeetCode 34】257.二叉树的所有路径
12 0
|
3月前
|
算法
测试工程师的技能升级:LeetCode算法挑战与职业成长
这篇文章通过作者亲身体验LeetCode算法题的过程,探讨了测试工程师学习算法的重要性,并强调了算法技能对于测试职业成长的必要性。
69 1
测试工程师的技能升级:LeetCode算法挑战与职业成长
|
3月前
|
存储 算法 Linux
LeetCode第71题简化路径
文章讲述了LeetCode第71题"简化路径"的解题方法,利用栈的数据结构特性来处理路径中的"."和"..",实现路径的简化。
LeetCode第71题简化路径
|
3月前
|
算法
LeetCode第64题最小路径和
LeetCode第64题"最小路径和"的解题方法,运用动态规划思想,通过构建一个dp数组来记录到达每个点的最小路径和,从而高效求解。
LeetCode第64题最小路径和