凸优化

简介: 凸优化

凸优化


数值优化算法面临两个方面的问题:局部极值,鞍点。前者是梯度为0的点,也是极值点,但不是全局极小值;后者连局部极值都不是,在鞍点处Hessian矩阵不定,即既非正定,也非负定。



凸优化通过对目标函数,优化变量的可行域进行限定,可以保证不会遇到上面两个问题。



凸优化是一类特殊的优化问题,它要求:


优化变量的可行域是一个凸集

目标函数是一个凸函数


凸优化最好的一个性质是:所有局部最优解一定是全局最优解。



机器学习中典型的凸优化问题有:


线性回归


岭回归


LASSO回归


Logistic回归


支持向量机


Softamx回归


相关文章
|
3月前
|
机器学习/深度学习 算法 搜索推荐
【机器学习】凸集、凸函数、凸优化、凸优化问题、非凸优化问题概念详解
本文解释了凸集、凸函数、凸优化以及非凸优化的概念,并探讨了它们在机器学习中的应用,包括如何将非凸问题转化为凸问题的方法和技术。
219 0
|
6月前
|
机器学习/深度学习 存储 算法
【程序员必须掌握的算法】【Matlab智能算法】GRNN神经网络-遗传算法(GRNN-GA)函数极值寻优——非线性函数求极值
【程序员必须掌握的算法】【Matlab智能算法】GRNN神经网络-遗传算法(GRNN-GA)函数极值寻优——非线性函数求极值
|
11月前
|
机器学习/深度学习 自然语言处理 算法
最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法
最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法
249 0
15 贝叶斯方法
15 贝叶斯方法
44 0
|
机器学习/深度学习 算法 决策智能
凸优化介绍
凸优化介绍。更多文章请关注我的微信公众号:Python学习杂记
171 0
|
机器学习/深度学习 算法 决策智能
基于遗传算法和非线性规划的函数寻优算法(Matlab代码实现)
基于遗传算法和非线性规划的函数寻优算法(Matlab代码实现)
184 0
|
算法 固态存储
【双目视觉】 立体匹配算法原理之“代价函数”
Census方法任取左图一个像素点P,观察周围3*3窗口的像素点灰度值,如果小于P就置1,否则为0,然后编码。右图也是如此。最后异或比较,根据异或后的结果,看‘1’的个数,计算汉明距离
189 0
|
机器学习/深度学习 人工智能 移动开发
【机器学习】线性分类——高斯判别分析GDA(理论+图解+公式推导)
【机器学习】线性分类——高斯判别分析GDA(理论+图解+公式推导)
361 0
【机器学习】线性分类——高斯判别分析GDA(理论+图解+公式推导)
|
算法
《最优化方法》——数学基础知识&线性规划&无约束优化算法初步
《最优化方法》——数学基础知识&线性规划&无约束优化算法初步
137 0
《最优化方法》——数学基础知识&线性规划&无约束优化算法初步
下一篇
无影云桌面