Python运用webbrowser打开PyEcharts生成的html文件

简介: Python运用webbrowser打开PyEcharts生成的html文件

话不多说,直接上代码

这里 也有更多pyecharts的代码~

示例

调用库

import pandas as pd
import time
from functools import partial
from PyQt5.QtWidgets import *
from PyQt5 import QtCore, QtGui, QtWidgets
from pyecharts import options as opts
from pyecharts.charts import Kline, Line, Bar, Grid
import webbrowser as wb

K线图、输出在默认浏览器显示

# 移动平均数计算
def moving_average(data, day_count):
    data = data.values[:, 0]
    result = []
    for i in range(len(data)):
        start_day_index = i - day_count + 1
        if start_day_index <= 0:
            start_day_index = 0
        justified_day_count = i - start_day_index + 1
        mean = data[start_day_index:i + 1].sum() / justified_day_count
        result.append(mean)
    return result
# k线             --项目需求:已实现--
def show_kline(csv_name):
    # 读取.csv文件,
    stock_code = 'Brent_OIL'
    stock_data = pd.read_csv(csv_name, encoding='gb2312')
    # 将文件内容按照by=[‘date’]内容进行排序
    stock_data = stock_data.sort_values(by=["date"], ascending=[True], inplace=False)
    stock_data_cleared = stock_data[stock_data['close'] > 0]
    stock_name = stock_data_cleared["position"][0]
    stock_data_extracted = stock_data_cleared[["open", "close", "low", "high", "volume", "date"]]
    kline = (
        Kline()
            .add_xaxis(stock_data_extracted["date"].values.tolist())
            .add_yaxis("K线图", stock_data_extracted.iloc[:, :4].values.tolist())
            .set_global_opts(
            xaxis_opts=opts.AxisOpts(is_scale=True, is_show=False),
            # axis_opts=opts.AxisOpts(is_scale=True,min_=0), #y轴起始坐标可以设为0
            yaxis_opts=opts.AxisOpts(is_scale=True),  # y轴起始坐标可自动调整
            #title_opts=opts.TitleOpts(title="价格", subtitle=stock_name + "\n" + stock_code, pos_top="20%"),
            axispointer_opts=opts.AxisPointerOpts(
                is_show=True,
                link=[{"xAxisIndex": "all"}],
                label=opts.LabelOpts(background_color="#777"),
            ),
            datazoom_opts=[  # 设置zoom参数后即可缩放
                opts.DataZoomOpts(
                    is_show=True,
                    type_="inside",
                    xaxis_index=[0, 1],  # 设置第0轴和第1轴同时缩放
                    range_start=0,
                    range_end=100,
                ),
                opts.DataZoomOpts(
                    is_show=True,
                    xaxis_index=[0, 1],
                    type_="slider",
                    pos_top="90%",
                    range_start=0,
                    range_end=100,
                ),
            ],
        )
    )
    # 移动平均线
    line = (
        Line()
            .add_xaxis(xaxis_data=stock_data_extracted["date"].values.tolist())
            .add_yaxis(
            series_name="MA5",
            y_axis=moving_average(stock_data_extracted[["close"]], 5),
            is_smooth=True,
            is_hover_animation=False,
            linestyle_opts=opts.LineStyleOpts(width=1, opacity=0.5),
            label_opts=opts.LabelOpts(is_show=False),
        )
            .add_yaxis(
            series_name="MA10",
            y_axis=moving_average(stock_data_extracted[["close"]], 10),
            is_smooth=True,
            is_hover_animation=False,
            linestyle_opts=opts.LineStyleOpts(width=1, opacity=0.5),
            label_opts=opts.LabelOpts(is_show=False),
        )
            .add_yaxis(
            series_name="MA30",
            y_axis=moving_average(stock_data_extracted[["close"]], 30),
            is_smooth=True,
            is_hover_animation=False,
            linestyle_opts=opts.LineStyleOpts(width=1, opacity=0.5),
            label_opts=opts.LabelOpts(is_show=False),
        )
            .add_yaxis(
            series_name="MA60",
            y_axis=moving_average(stock_data_extracted[["close"]], 60),
            is_smooth=True,
            is_hover_animation=False,
            linestyle_opts=opts.LineStyleOpts(width=1, opacity=0.5),
            label_opts=opts.LabelOpts(is_show=False),
        )
            .add_yaxis(
            series_name="MA120",
            y_axis=moving_average(stock_data_extracted[["close"]], 120),
            is_smooth=True,
            is_hover_animation=False,
            linestyle_opts=opts.LineStyleOpts(width=1, opacity=0.5),
            label_opts=opts.LabelOpts(is_show=False),
        )
            .add_yaxis(
            series_name="MA240",
            y_axis=moving_average(stock_data_extracted[["close"]], 240),
            is_smooth=True,
            is_hover_animation=False,
            linestyle_opts=opts.LineStyleOpts(width=1, opacity=0.5),
            label_opts=opts.LabelOpts(is_show=False),
        )
            .add_yaxis(
            series_name="MA360",
            y_axis=moving_average(stock_data_extracted[["close"]], 360),
            is_smooth=True,
            is_hover_animation=False,
            linestyle_opts=opts.LineStyleOpts(width=1, opacity=0.5),
            label_opts=opts.LabelOpts(is_show=False),
        )
            .set_global_opts(xaxis_opts=opts.AxisOpts(type_="category"))
    )
    # 将K线图和移动平均线显示在一个图内
    kline.overlap(line)
    # 成交量柱形图
    x = stock_data_extracted[["date"]].values[:, 0].tolist()
    y = stock_data_extracted[["volume"]].values[:, 0].tolist()
    bar = (
        Bar()
            .add_xaxis(x)
            .add_yaxis("成交量", y, label_opts=opts.LabelOpts(is_show=False),
                       itemstyle_opts=opts.ItemStyleOpts(color="#008080"))
            .set_global_opts(title_opts=opts.TitleOpts(title="成交量", pos_top="70%"),
                             legend_opts=opts.LegendOpts(is_show=False),
                             )
    )
    # 使用网格将多张图标组合到一起显示
    grid_chart = Grid()
    grid_chart.add(
        kline,
        grid_opts=opts.GridOpts(pos_left="15%", pos_right="8%", height="55%"),
    )
    grid_chart.add(
        bar,
        grid_opts=opts.GridOpts(pos_left="15%", pos_right="8%", pos_top="70%", height="20%"),
    )
    htl = csv_name + ".html"
    grid_chart.render(htl)
    wb.open(htl)

主函数

def click_success(self):
    print("数据获取成功!")
    csv_name1 = 'outside_brent_oil.csv'
    outside_history_brent_oil_data().to_csv(csv_name1, index=False)
    show_kline(csv_name1)
    # html_success()
def click_success_3(self):
    print("数据获取成功!")
    csv_name2 = 'outside_newyork_oil.csv'
    outside_history_newyork_oil_data().to_csv(csv_name2, index=False)
    show_kline(csv_name2)
def click_success_4(self):
    print("数据获取成功!")
    csv_name3 = 'outside_newyork_gas.csv'
    outside_history_newyork_natural_gas_data().to_csv(csv_name3, index=False)
    show_kline(csv_name3)
if __name__ == '__main__':
    app = QApplication(sys.argv)
    MainWindow = QMainWindow()
    ui = Ui_MainWindow()
    ui.setupUi(MainWindow)
    MainWindow.show()
     # 外盘期货
    ui.pushButton.clicked.connect(click_success)           # 布伦特原油期货分析图
    ui.pushButton_3.clicked.connect(click_success_3)       # 纽约原油期货分析图
    ui.pushButton_4.clicked.connect(click_success_4)       # 纽约天然气期货分析图
    sys.exit(app.exec_())

其中实现跳转代码为

    htl = csv_name + ".html"
    grid_chart.render(htl)
    wb.open(htl)


相关文章
|
20天前
|
计算机视觉 Python
如何使用Python将TS文件转换为MP4
本文介绍了如何使用Python和FFmpeg将TS文件转换为MP4文件。首先需要安装Python和FFmpeg,然后通过`subprocess`模块调用FFmpeg命令,实现文件格式的转换。代码示例展示了具体的操作步骤,包括检查文件存在性、构建FFmpeg命令和执行转换过程。
37 7
|
2月前
|
XML 数据采集 数据格式
Python 爬虫必备杀器,xpath 解析 HTML
【11月更文挑战第17天】XPath 是一种用于在 XML 和 HTML 文档中定位节点的语言,通过路径表达式选取节点或节点集。它不仅适用于 XML,也广泛应用于 HTML 解析。基本语法包括标签名、属性、层级关系等的选择,如 `//p` 选择所有段落标签,`//a[@href=&#39;example.com&#39;]` 选择特定链接。在 Python 中,常用 lxml 库结合 XPath 进行网页数据抓取,支持高效解析与复杂信息提取。高级技巧涵盖轴的使用和函数应用,如 `contains()` 用于模糊匹配。
|
3月前
|
安全 Linux 数据安全/隐私保护
python知识点100篇系列(15)-加密python源代码为pyd文件
【10月更文挑战第5天】为了保护Python源码不被查看,可将其编译成二进制文件(Windows下为.pyd,Linux下为.so)。以Python3.8为例,通过Cython工具,先写好Python代码并加入`# cython: language_level=3`指令,安装easycython库后,使用`easycython *.py`命令编译源文件,最终生成.pyd文件供直接导入使用。
python知识点100篇系列(15)-加密python源代码为pyd文件
|
30天前
|
机器学习/深度学习 前端开发 数据处理
利用Python将Excel快速转换成HTML
本文介绍如何使用Python将Excel文件快速转换成HTML格式,以便在网页上展示或进行进一步的数据处理。通过pandas库,你可以轻松读取Excel文件并将其转换为HTML表格,最后保存为HTML文件。文中提供了详细的代码示例和注意事项,帮助你顺利完成这一任务。
39 0
|
2月前
|
开发者 Python
Python中__init__.py文件的作用
`__init__.py`文件在Python包管理中扮演着重要角色,通过标识目录为包、初始化包、控制导入行为、支持递归包结构以及定义包的命名空间,`__init__.py`文件为组织和管理Python代码提供了强大支持。理解并正确使用 `__init__.py`文件,可以帮助开发者更好地组织代码,提高代码的可维护性和可读性。
85 2
|
2月前
|
中间件 Docker Python
【Azure Function】FTP上传了Python Function文件后,无法在门户页面加载函数的问题
通过FTP上传Python Function至Azure云后,出现函数列表无法加载的问题。经排查,发现是由于`requirements.txt`中的依赖包未被正确安装。解决方法为:在本地安装依赖包到`.python_packages/lib/site-packages`目录,再将该目录内容上传至云上的`wwwroot`目录,并重启应用。最终成功加载函数列表。
|
3月前
|
Web App开发 前端开发 搜索推荐
创建HTML文件
【10月更文挑战第14天】创建HTML文件
68 4
|
3月前
|
Java Python
> python知识点100篇系列(19)-使用python下载文件的几种方式
【10月更文挑战第7天】本文介绍了使用Python下载文件的五种方法,包括使用requests、wget、线程池、urllib3和asyncio模块。每种方法适用于不同的场景,如单文件下载、多文件并发下载等,提供了丰富的选择。
|
3月前
|
XML 前端开发 数据格式
Beautiful Soup 解析html | python小知识
在数据驱动的时代,网页数据是非常宝贵的资源。很多时候我们需要从网页上提取数据,进行分析和处理。Beautiful Soup 是一个非常流行的 Python 库,可以帮助我们轻松地解析和提取网页中的数据。本文将详细介绍 Beautiful Soup 的基础知识和常用操作,帮助初学者快速入门和精通这一强大的工具。【10月更文挑战第11天】
83 2
|
3月前
|
数据安全/隐私保护 流计算 开发者
python知识点100篇系列(18)-解析m3u8文件的下载视频
【10月更文挑战第6天】m3u8是苹果公司推出的一种视频播放标准,采用UTF-8编码,主要用于记录视频的网络地址。HLS(Http Live Streaming)是苹果公司提出的一种基于HTTP的流媒体传输协议,通过m3u8索引文件按序访问ts文件,实现音视频播放。本文介绍了如何通过浏览器找到m3u8文件,解析m3u8文件获取ts文件地址,下载ts文件并解密(如有必要),最后使用ffmpeg合并ts文件为mp4文件。