简单的梯度下降算法,你真的懂了吗?

简介: 简单的梯度下降算法,你真的懂了吗?

image.png

梯度下降算法的公式非常简单,”沿着梯度的反方向(坡度最陡)“是我们日常经验得到的,其本质的原因到底是什么呢?为什么局部下降最快的方向就是梯度的负方向呢?也许很多朋友还不太清楚。没关系,接下来我将以通俗的语言来详细解释梯度下降算法公式的数学推导过程。


下山问题


假设我们位于黄山的某个山腰处,山势连绵不绝,不知道怎么下山。于是决定走一步算一步,也就是每次沿着当前位置最陡峭最易下山的方向前进一小步,然后继续沿下一个位置最陡方向前进一小步。这样一步一步走下去,一直走到觉得我们已经到了山脚。这里的下山最陡的方向就是梯度的负方向

image.png

首先理解什么是梯度?通俗来说,梯度就是表示某一函数在该点处的方向导数沿着该方向取得最大值,即函数在当前位置的导数。

image.png

上式中,θ是自变量,f(θ)是关于θ的函数,θ表示梯度。


如果函数f(θ)凸函数,那么就可以使用梯度下降算法进行优化。梯度下降算法的公式我们已经很熟悉了:

image.png

其中,θo是自变量参数,即下山位置坐标,η学习因子,即下山每次前进的一小步(步进长度),θ是更新后的θo,即下山移动一小步之后的位置。


一阶泰勒展开式


这里需要一点数学基础,对泰勒展开式有些了解。简单地来说,一阶泰勒展开式利用的就是函数的局部线性近似这个概念。我们以一阶泰勒展开式为例:、

image.png

image.png

凸函数f(θ)的某一小段[θo,θ]由上图黑色曲线表示,可以利用线性近似的思想求出f(θ)的值,如上图红色直线。该直线的斜率等于f(θ)θo处的导数。则根据直线方程,很容易得到f(θ)的近似表达式为:

image.png

这就是一阶泰勒展开式的推导过程,主要利用的数学思想就是曲线函数的线性拟合近似。


梯度下降数学原理


知道了一阶泰勒展开式之后,接下来就是重点了!我们来看一下梯度下降算法是如何推导的。


先写出一阶泰勒展开式的表达式:

image.png

image.png

上面这个不等式非常重要!v∇f(θo)都是向量,∇f(θo)是当前位置的梯度方向,v表示下一步前进的单位向量,是需要我们求解的,有了它,就能根据vθ−θo=ηv确定θ值了。

image.png

||A||和||B||均为标量,在||A||和||B||确定的情况下,只要cos(α)=−1,即AB完全反向,就能让AB的向量乘积最小(负最大值)。


顾名思义,当v∇f(θo)互为反向,即v为当前梯度方向的负方向的时候,能让v⋅∇f(θo)最大程度地小,也就保证了v的方向是局部下降最快的方向。


知道v是∇f(θo)的反方向后,可直接得到:

image.png

之所以要除以∇f(θo)的模||∇f(θo)||,是因为v是单位向量。


求出最优解v之后,带入到θ−θo=ηv中,得:

image.png

image.png


总结


我们通过一阶泰勒展开式,利用线性近似和向量相乘最小化的思想搞懂了梯度下降算法的数学原理。也许你之前很熟悉梯度下降算法,但也许对它的推导过程并不清楚。看了本文,你是否有所收获呢?

相关文章
|
3月前
|
机器学习/深度学习 算法 大数据
机器学习入门:梯度下降算法(下)
机器学习入门:梯度下降算法(下)
|
7月前
|
机器学习/深度学习 算法 PyTorch
【从零开始学习深度学习】38. Pytorch实战案例:梯度下降、随机梯度下降、小批量随机梯度下降3种优化算法对比【含数据集与源码】
【从零开始学习深度学习】38. Pytorch实战案例:梯度下降、随机梯度下降、小批量随机梯度下降3种优化算法对比【含数据集与源码】
|
4月前
|
机器学习/深度学习 算法
深度学习中的优化算法:从梯度下降到Adam
本文深入探讨了深度学习中的核心——优化算法,重点分析了梯度下降及其多种变体。通过比较梯度下降、动量方法、AdaGrad、RMSProp以及Adam等算法,揭示了它们如何更高效地找到损失函数的最小值。此外,文章还讨论了不同优化算法在实际模型训练中的表现和选择依据,为深度学习实践提供了宝贵的指导。
119 7
|
3月前
|
机器学习/深度学习 算法
机器学习入门:梯度下降算法(上)
机器学习入门:梯度下降算法(上)
|
5月前
|
机器学习/深度学习 算法 Python
探索机器学习中的梯度下降优化算法
【8月更文挑战第1天】在机器学习的广阔天地里,梯度下降法如同一位勇敢的探险家,指引我们穿越复杂的数学丛林,寻找模型参数的最优解。本文将深入探讨梯度下降法的核心原理,并通过Python代码示例,展示其在解决实际问题中的应用。
100 3
|
7月前
|
机器学习/深度学习 分布式计算 并行计算
算法金 | 再见!!!梯度下降(多图)
**梯度下降及其优化算法简述** 梯度下降是一种优化算法,广泛用于机器学习和深度学习,通过迭代更新模型参数以最小化损失函数。它有几种变体,包括批梯度下降(使用全部数据)、随机梯度下降(单个样本)和小批量梯度下降(小批量样本)。每种形式在计算效率和稳定性上各有优劣。
166 4
算法金 | 再见!!!梯度下降(多图)
|
7月前
|
算法
梯度下降算法(二)
梯度下降法中,学习率选择至关重要。0.3的学习率导致无法找到最小值且产生震荡,而0.01则使结果接近最优解(2.99998768)。当学习率进一步减小至0.001,点远离最低点。通过迭代次数增加至1000次,可更接近最低点(2.999999999256501)。梯度下降用于最小化损失,学习率控制参数更新步长,需平衡收敛速度和稳定性。迭代次数和初始点也影响模型性能,合适的初始化能加速收敛并避开局部极小值。
|
7月前
|
机器学习/深度学习 存储 算法
梯度下降算法(一)
梯度下降是一种迭代优化算法,用于找到多变量函数的最小值。它不直接求解方程,而是从随机初始点开始,沿着梯度(函数增大幅度最大方向)的反方向逐步调整参数,逐步逼近函数的最小值。在单变量函数中,梯度是导数,而在多变量函数中,梯度是一个包含所有变量偏导数的向量。通过计算梯度并乘以学习率,算法更新参数以接近最小值。代码示例展示了如何用Python实现梯度下降,通过不断迭代直到梯度足够小或达到预设的最大迭代次数。该过程可以类比为在雾中下山,通过感知坡度变化来调整前进方向。
|
7月前
|
机器学习/深度学习 算法 C语言
【深度学习】优化算法:从梯度下降到Adam
【深度学习】优化算法:从梯度下降到Adam
185 1
|
7月前
|
机器学习/深度学习 算法 PyTorch
《PyTorch深度学习实践》--3梯度下降算法
《PyTorch深度学习实践》--3梯度下降算法

热门文章

最新文章