精通Python网络爬虫:核心技术、框架与项目实战.3.7 实例——metaseeker

简介:

3.7 实例——metaseeker


metaseeker是一款比较实用的网站数据采集程序,使用该采集程序,可以让大家比较快速、形象地了解爬虫的工作过程。所以在本节中,会以metaseeker为例,跟大家一起学习如何采集当当网的商品及价格信息,让大家对爬虫工作过程有一个形象地了解,为后续我们使用Python开发爬虫打下基础。

如图3-5所示,我们将为大家爬取当当网新书栏目下的商品的名称及价格等信息(http://e.dangdang.com/morelist_page.html?columnType=all_rec_xssf&title=%E6%96%B0%E4%B9%A6%E9%A6%96%E5%8F%91)。

 

图3-5 当当网新书网页

可以从官网下载metaseeker工具(http://www.gooseeker.com/pro/product.html),进入后,选择第三种方案下载,如图3-6所示。该软件有的版本可以与浏览器配合使用,方案三集成了浏览器和该爬虫软件,安装起来比较简单。

下载之后,我们只需要打开安装即可,安装好之后,打开该软件,会出现一个类似浏览器的界面,我们打开要爬取的网址(即刚才提到的当当网的图书商品页),单击“MS谋数台”,如图3-7所示。

打开后,会出现图3-8所示的界面。

此时,我们需要将刚才的商品页面网址复制到左上角的网址处,并按一下回车键,如图3-9所示。在加载了一会儿之后,软件的左下角处会出现“完成”字样,此时代表网页加载完成。

 

图3-8 MS谋数台显示界面

然后,我们需要在该界面的“工作台”中,创建命名主题,创建好命名主题后,需要单击“查重”按钮,看是否名称冲突,若名称冲突则需要换一个主题名字。如图3-10所示,创建了一个名为dangdangbookprice的主题名。

创建主题名之后,需要进行下一步操作,即创建规则。我们在创建规则的页面中,单击新建,便可以输入想创建的规则名称,该规则名称可以自己拟定,如图3-11所示,我们创建了一个名为“当当图书商品价格抓取”的规则名称。

 

图3-9 页面加载完成

图3-10 创建主题名 图3-11 创建规则名称

创建好了该规则名称后,我们需要选定该规则名,然后右键,单击添加→包容,如图3-12所示。

随后,会出现如图3-13所示的界面,让我们填写被爬取内容的详细信息,此时,我们需要根据自己的需求规划好一共需要多少个包容,比如,在此我们需要爬取商品的名称和商品的价格,所以两个包容就够了。我们先创建第一个包容,即商品价格,输入对应名称,然后勾选好右边的“关键内容”。完成之后,可以单击保存,然后再次选中规则名,并右键添加第二个包容,即商品名称。

图3-12 添加包容信息 图3-13 填写包容的详细信息

完成之后,会出现如图3-14所示界面。

随后,我们可以在该界面的浏览器窗口中,选择其中一个商品的名称,即以一个商品名为例,建立好对应的规则。单击后可能会出现如图3-15所示的提示。

图3-14 添加包容完成后的显示界面 图3-15 定为网页位置失败的提示

如果出现图3-15中的提示,我们可以单击该界面左上角的文件→刷新网页结构,如

图3-16所示,这样即可解决该问题。

解决该问题后,我们再次单击其中一个商品名,单击后,网页标签处自动定位到对应的元素中。如图3-17所示,我们单击了“幸存者”之后,在网页标签中自动定位到了对应的DIV中,将DIV展开,有一个“#text”的字样,选中该字样,可以看到,在工作台的文本内容中,出现了对应的商品名,此时代表商品名定位成功。

随后,我们选中对应的“#text”,然后右键,单击内容映射→商品名称,将该规则映射到对应的商品名称包容中,那么以后,便可以根据这个规则去爬取网页上的其他商品的名称了,如图3-18所示。

我们还需要指定价格的规则,此时我们在浏览器区域中,单击该商品对应的价格,然后,在网页标签处会进行自动定位,如图3-19所示,我们单击了对应的价格“9.09”之后,网页标签处,自动定位到了对应的I标签下,我们展开I标签,同样可以看得到一个“#text”,选中“#text”在工作台的文本内容中,会出现对应的价格信息,此时,代表定位成功。

然后,我们同样需要选中该标签,然后右击,将该标签映射到商品价格中,如图3-20所示。

  

标签规则映射好之后,我们返回工作台,然后单击测试,便可以看得到当前是否爬取该界面中的所有商品信息。如图3-21所示,返回工作台,并单击测试。

单击了测试后,在输出信息中,我们可以看得到,该输出信息包含了该界面中所有的商品名称和对应的商品价格,也就是说,我们成功采集了,如图3-22所示,由于界面空间有限,只展现了部分爬取信息。

如果我们要对该网站下其他网页中的商品信息都进行自动爬取,虽然也是可以的,但是需要设置对应的爬取规则。在这里,metaseeker的使用仅作为本书的一个实例,并不是本书的重点内容,所以,关于metaseeker的深入使用部分我们就不过多讲解了,对应的内容不难,有兴趣的读者可以查看相关资料。

 

图3-21 返回工作台

 

图3-22 成功采集界面中所有的商品信息

我们讲该实例的目的是让大家对爬虫有一个形象的初步印象,方便后续深入学习爬虫开发。

相关文章
|
6天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
115 55
|
16天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
97 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
6天前
|
机器学习/深度学习 算法 PyTorch
基于图神经网络的大语言模型检索增强生成框架研究:面向知识图谱推理的优化与扩展
本文探讨了图神经网络(GNN)与大型语言模型(LLM)结合在知识图谱问答中的应用。研究首先基于G-Retriever构建了探索性模型,然后深入分析了GNN-RAG架构,通过敏感性研究和架构改进,显著提升了模型的推理能力和答案质量。实验结果表明,改进后的模型在多个评估指标上取得了显著提升,特别是在精确率和召回率方面。最后,文章提出了反思机制和教师网络的概念,进一步增强了模型的推理能力。
24 4
基于图神经网络的大语言模型检索增强生成框架研究:面向知识图谱推理的优化与扩展
|
2天前
|
数据挖掘 vr&ar C++
让UE自动运行Python脚本:实现与实例解析
本文介绍如何配置Unreal Engine(UE)以自动运行Python脚本,提高开发效率。通过安装Python、配置UE环境及使用第三方插件,实现Python与UE的集成。结合蓝图和C++示例,展示自动化任务处理、关卡生成及数据分析等应用场景。
17 5
|
5天前
|
JSON 数据可视化 测试技术
python+requests接口自动化框架的实现
通过以上步骤,我们构建了一个基本的Python+Requests接口自动化测试框架。这个框架具有良好的扩展性,可以根据实际需求进行功能扩展和优化。它不仅能提高测试效率,还能保证接口的稳定性和可靠性,为软件质量提供有力保障。
23 7
|
2天前
|
分布式计算 大数据 数据处理
技术评测:MaxCompute MaxFrame——阿里云自研分布式计算框架的Python编程接口
随着大数据和人工智能技术的发展,数据处理的需求日益增长。阿里云推出的MaxCompute MaxFrame(简称“MaxFrame”)是一个专为Python开发者设计的分布式计算框架,它不仅支持Python编程接口,还能直接利用MaxCompute的云原生大数据计算资源和服务。本文将通过一系列最佳实践测评,探讨MaxFrame在分布式Pandas处理以及大语言模型数据处理场景中的表现,并分析其在实际工作中的应用潜力。
16 2
|
24天前
|
人工智能 自然语言处理
WebDreamer:基于大语言模型模拟网页交互增强网络规划能力的框架
WebDreamer是一个基于大型语言模型(LLMs)的网络智能体框架,通过模拟网页交互来增强网络规划能力。它利用GPT-4o作为世界模型,预测用户行为及其结果,优化决策过程,提高性能和安全性。WebDreamer的核心在于“做梦”概念,即在实际采取行动前,用LLM预测每个可能步骤的结果,并选择最有可能实现目标的行动。
52 1
WebDreamer:基于大语言模型模拟网页交互增强网络规划能力的框架
|
17天前
|
机器学习/深度学习 人工智能 算法
深度学习入门:用Python构建你的第一个神经网络
在人工智能的海洋中,深度学习是那艘能够带你远航的船。本文将作为你的航标,引导你搭建第一个神经网络模型,让你领略深度学习的魅力。通过简单直观的语言和实例,我们将一起探索隐藏在数据背后的模式,体验从零开始创造智能系统的快感。准备好了吗?让我们启航吧!
42 3
|
18天前
|
敏捷开发 测试技术 持续交付
自动化测试之美:从零开始搭建你的Python测试框架
在软件开发的马拉松赛道上,自动化测试是那个能让你保持节奏、避免跌宕起伏的神奇小助手。本文将带你走进自动化测试的世界,用Python这把钥匙,解锁高效、可靠的测试框架之门。你将学会如何步步为营,构建属于自己的测试庇护所,让代码质量成为晨跑时清新的空气,而不是雾霾中的忧虑。让我们一起摆脱手动测试的繁琐枷锁,拥抱自动化带来的自由吧!
|
21天前
|
网络安全 Python
Python网络编程小示例:生成CIDR表示的IP地址范围
本文介绍了如何使用Python生成CIDR表示的IP地址范围,通过解析CIDR字符串,将其转换为二进制形式,应用子网掩码,最终生成该CIDR块内所有可用的IP地址列表。示例代码利用了Python的`ipaddress`模块,展示了从指定CIDR表达式中提取所有IP地址的过程。
36 6
下一篇
DataWorks