分布式作业 Elastic-Job 快速上手指南,从理论到实战一文搞定!

本文涉及的产品
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
云原生网关 MSE Higress,422元/月
注册配置 MSE Nacos/ZooKeeper,118元/月
简介: Elastic-Job支持 JAVA API 和 Spring 配置两种方式配置任务,这里我们使用 JAVA API 的形式来创建一个简单的任务入门,现在都是 Spring Boot 时代了,所以不建议使用 Spring 配置文件的形式。Elastic-Job 需要依赖 Zookeeper 中间件,用于注册和协调作业分布式行为的组件,目前仅支持 Zookeeper。我们已经创建了 Zookeeper 集群!

Elastic-Job支持 JAVA API 和 Spring 配置两种方式配置任务,这里我们使用 JAVA API 的形式来创建一个简单的任务入门,现在都是 Spring Boot 时代了,所以不建议使用 Spring 配置文件的形式。


Elastic-Job 需要依赖 Zookeeper 中间件,用于注册和协调作业分布式行为的组件,目前仅支持 Zookeeper。我们已经创建了 Zookeeper 集群!


环境要求

1、Java 请使用 JDK 1.7 及其以上版本。


2、Zookeeper 请使用 Zookeeper 3.4.6 及其以上版本。


3、Maven 请使用 Maven 3.0.4 及其以上版本。


引入maven依赖

<dependency>
    <groupId>com.dangdang</groupId>
    <artifactId>elastic-job-lite-core</artifactId>
    <version>2.1.5</version>
</dependency>

这里有一个坑,这个依赖里面会包含有两个不同版本的 curator-client,导致调用里面方法的时候会找不到方法,所以需要单独引入 curator-client 的依赖包。

<dependency>
    <groupId>org.apache.curator</groupId>
    <artifactId>curator-client</artifactId>
    <version>2.11.1</version>
</dependency>

创建作业

Elastic-Job 提供 Simple、Dataflow 和 Script 3种作业类型。


方法参数 shardingContext 包含作业配置、片和运行时信息。可通过 getShardingTotalCount(), getShardingItem() 等方法分别获取分片总数,运行在本作业服务器的分片序列号等。


这里我们创建一个简单(Simple)作业。

public class MyElasticJob implements SimpleJob {
    @Override
    public void execute(ShardingContext context) {
        switch (context.getShardingItem()) {
            case 0: {
                System.out.println("MyElasticJob - 0");
                break;
            }
            case 1: {
                System.out.println("MyElasticJob - 1");
                break;
            }
            case 2: {
                System.out.println("MyElasticJob - 2");
                break;
            }
            default: {
                System.out.println("MyElasticJob - default");
            }
        }
    }
}

上面的0-2涉及分布式作业框架中分片的概念


任务的分布式执行,需要将一个任务拆分为多个独立的任务项,然后由分布式的服务器分别执行某一个或几个分片项。


例如:有一个遍历数据库某张表的作业,现有2台服务器。为了快速的执行作业,那么每台服务器应执行作业的50%。为满足此需求,可将作业分成2片,每台服务器执行1片。作业遍历数据的逻辑应为:服务器A遍历ID以奇数结尾的数据;服务器B遍历ID以偶数结尾的数据。如果分成10片,则作业遍历数据的逻辑应为:每片分到的分片项应为ID%10,而服务器A被分配到分片项0,1,2,3,4;服务器B被分配到分片项5,6,7,8,9,直接的结果就是服务器A遍历ID以0-4结尾的数据;服务器B遍历ID以5-9结尾的数据。


作业分片策略:http://elasticjob.io/docs/elastic-job-lite/02-guide/job-sharding-strategy/


配置作业

Elastic-Job 配置分为3个层级,分别是 Core, Type 和 Root,每个层级使用相似于装饰者模式的方式装配。


Core 对应 JobCoreConfiguration,用于提供作业核心配置信息,如:作业名称、分片总数、CRON表达式等。


Type 对应 JobTypeConfiguration,有3个子类分别对应 SIMPLE, DATAFLOW 和 SCRIPT 类型作业,提供3种作业需要的不同配置,如:DATAFLOW 类型是否流式处理或 SCRIPT 类型的命令行等。


Root 对应 JobRootConfiguration,有2个子类分别对应 Lite 和 Cloud 部署类型,提供不同部署类型所需的配置,如:Lite类型的是否需要覆盖本地配置或 Cloud 占用 CPU 或 Memory 数量等。


在 Spring Boot 启动类里面加作业配置代码。

private static CoordinatorRegistryCenter createRegistryCenter() {
    CoordinatorRegistryCenter regCenter = new ZookeeperRegistryCenter(new ZookeeperConfiguration("192.168.10.31:2181,192.168.10.32:2181,192.168.10.33:2181", "elastic-job-demo"));
    regCenter.init();
    return regCenter;
}
private static LiteJobConfiguration createJobConfiguration() {
    // 定义作业核心配置
    JobCoreConfiguration simpleCoreConfig = JobCoreConfiguration.newBuilder("demoSimpleJob", "0/15 * * * * ?", 10).build();
    // 定义SIMPLE类型配置
    SimpleJobConfiguration simpleJobConfig = new SimpleJobConfiguration(simpleCoreConfig, MyElasticJob.class.getCanonicalName());
    // 定义Lite作业根配置
    LiteJobConfiguration simpleJobRootConfig = LiteJobConfiguration.newBuilder(simpleJobConfig).build();
}
@Bean
public CommandLineRunner commandLineRunner() {
    return (String... args) -> {
        new JobScheduler(createRegistryCenter(), createJobConfiguration()).init();
    };
}

SimpleJobConfiguration 实现了JobTypeConfiguration接口。


LiteJobConfiguration 实现了JobRootConfiguration接口。


使用CommandLineRunner,可以等 Spring Boot 启动后再启动 Elastic-Job 作业。


其他的最基础的 Spring Boot 的配置就不说了,不懂的可以去公众号菜单 Spring Boot 专题中学习。


更多作业的配置请参考官方文档:http://elasticjob.io/docs/elastic-job-lite/02-guide/config-manual/


启动作业

在工具里面使用 maven 命令 spring-boot:run 启动即可。


程序输出:

MyElasticJob - 0
MyElasticJob - 1
MyElasticJob - 2
MyElasticJob - default
MyElasticJob - default
MyElasticJob - default
MyElasticJob - default
MyElasticJob - default
MyElasticJob - default
MyElasticJob - default

由于是单个实例,所有 10 个分片都在一个实例输出来了,现在我们把它打成 jar 包,然后再用另外一个端口启动看下是否分片成功。


两边分别输出:

MyElasticJob - 0
MyElasticJob - 1
MyElasticJob - 2
MyElasticJob - default
MyElasticJob - default

MyElasticJob - default
MyElasticJob - default
MyElasticJob - default
MyElasticJob - default
MyElasticJob - default

上面的输出信息说明分片成功了,然后停掉一个项目后发现又自动触发分片,所有的都在同一个输出来了。

可以看出分片功能真的非常实用,作业开发起来真的很方便,整个架构也很清晰,推荐大家使用。

后面还更多的 Elastic-Job 实战干货请继续关注,觉得有用就动手分享鼓励一下我们吧!

相关实践学习
基于MSE实现微服务的全链路灰度
通过本场景的实验操作,您将了解并实现在线业务的微服务全链路灰度能力。
相关文章
|
28天前
|
数据管理 API 调度
鸿蒙HarmonyOS应用开发 | 探索 HarmonyOS Next-从开发到实战掌握 HarmonyOS Next 的分布式能力
HarmonyOS Next 是华为新一代操作系统,专注于分布式技术的深度应用与生态融合。本文通过技术特点、应用场景及实战案例,全面解析其核心技术架构与开发流程。重点介绍分布式软总线2.0、数据管理、任务调度等升级特性,并提供基于 ArkTS 的原生开发支持。通过开发跨设备协同音乐播放应用,展示分布式能力的实际应用,涵盖项目配置、主界面设计、分布式服务实现及部署调试步骤。此外,深入分析分布式数据同步原理、任务调度优化及常见问题解决方案,帮助开发者掌握 HarmonyOS Next 的核心技术和实战技巧。
201 76
鸿蒙HarmonyOS应用开发 | 探索 HarmonyOS Next-从开发到实战掌握 HarmonyOS Next 的分布式能力
|
29天前
|
物联网 调度 vr&ar
鸿蒙HarmonyOS应用开发 |鸿蒙技术分享HarmonyOS Next 深度解析:分布式能力与跨设备协作实战
鸿蒙技术分享:HarmonyOS Next 深度解析 随着万物互联时代的到来,华为发布的 HarmonyOS Next 在技术架构和生态体验上实现了重大升级。本文从技术架构、生态优势和开发实践三方面深入探讨其特点,并通过跨设备笔记应用实战案例,展示其强大的分布式能力和多设备协作功能。核心亮点包括新一代微内核架构、统一开发语言 ArkTS 和多模态交互支持。开发者可借助 DevEco Studio 4.0 快速上手,体验高效、灵活的开发过程。 239个字符
215 13
鸿蒙HarmonyOS应用开发 |鸿蒙技术分享HarmonyOS Next 深度解析:分布式能力与跨设备协作实战
|
1月前
|
NoSQL Java Redis
秒杀抢购场景下实战JVM级别锁与分布式锁
在电商系统中,秒杀抢购活动是一种常见的营销手段。它通过设定极低的价格和有限的商品数量,吸引大量用户在特定时间点抢购,从而迅速增加销量、提升品牌曝光度和用户活跃度。然而,这种活动也对系统的性能和稳定性提出了极高的要求。特别是在秒杀开始的瞬间,系统需要处理海量的并发请求,同时确保数据的准确性和一致性。 为了解决这些问题,系统开发者们引入了锁机制。锁机制是一种用于控制对共享资源的并发访问的技术,它能够确保在同一时间只有一个进程或线程能够操作某个资源,从而避免数据不一致或冲突。在秒杀抢购场景下,锁机制显得尤为重要,它能够保证商品库存的扣减操作是原子性的,避免出现超卖或数据不一致的情况。
63 10
|
7月前
|
消息中间件 NoSQL Java
Redis系列学习文章分享---第六篇(Redis实战篇--Redis分布式锁+实现思路+误删问题+原子性+lua脚本+Redisson功能介绍+可重入锁+WatchDog机制+multiLock)
Redis系列学习文章分享---第六篇(Redis实战篇--Redis分布式锁+实现思路+误删问题+原子性+lua脚本+Redisson功能介绍+可重入锁+WatchDog机制+multiLock)
272 0
|
3月前
|
NoSQL Java Redis
开发实战:使用Redisson实现分布式延时消息,订单30分钟关闭的另外一种实现!
本文详细介绍了 Redisson 延迟队列(DelayedQueue)的实现原理,包括基本使用、内部数据结构、基本流程、发送和获取延时消息以及初始化延时队列等内容。文章通过代码示例和流程图,逐步解析了延迟消息的发送、接收及处理机制,帮助读者深入了解 Redisson 延迟队列的工作原理。
|
5月前
|
消息中间件 Java Kafka
"Kafka快速上手:从环境搭建到Java Producer与Consumer实战,轻松掌握分布式流处理平台"
【8月更文挑战第10天】Apache Kafka作为分布式流处理平台的领头羊,凭借其高吞吐量、可扩展性和容错性,在大数据处理、实时日志收集及消息队列领域表现卓越。初学者需掌握Kafka基本概念与操作。Kafka的核心组件包括Producer(生产者)、Broker(服务器)和Consumer(消费者)。Producer发送消息到Topic,Broker负责存储与转发,Consumer则读取这些消息。首先确保已安装Java和Kafka,并启动服务。接着可通过命令行创建Topic,并使用提供的Java API实现Producer发送消息和Consumer读取消息的功能。
104 8
|
5月前
|
消息中间件 SQL 关系型数据库
go-zero微服务实战系列(十、分布式事务如何实现)
go-zero微服务实战系列(十、分布式事务如何实现)
|
6月前
|
负载均衡 Java 开发者
Spring Cloud实战:构建分布式系统解决方案
Spring Cloud实战:构建分布式系统解决方案
|
8月前
|
监控 NoSQL 算法
探秘Redis分布式锁:实战与注意事项
本文介绍了Redis分区容错中的分布式锁概念,包括利用Watch实现乐观锁和使用setnx防止库存超卖。乐观锁通过Watch命令监控键值变化,在事务中执行修改,若键值被改变则事务失败。Java代码示例展示了具体实现。setnx命令用于库存操作,确保无超卖,通过设置锁并检查库存来更新。文章还讨论了分布式锁存在的问题,如客户端阻塞、时钟漂移和单点故障,并提出了RedLock算法来提高可靠性。Redisson作为生产环境的分布式锁实现,提供了可重入锁、读写锁等高级功能。最后,文章对比了Redis、Zookeeper和etcd的分布式锁特性。
579 16
探秘Redis分布式锁:实战与注意事项