windows ElasticSearch 7.6.0集群搭建

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: windows ElasticSearch 7.6.0集群搭建

windows ElasticSearch 7.6.0集群搭建


1、下载elasticsearch 7.6.0

下载地址:https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-7.6.0-windows-x86_64.zip


2、解压elasticsearch 7.6.0

解压完成之后复制两份,如下:

image.png


3、节点配置

更改elasticsearch7.6.0的配置文件elasticsearch.yml

image.png


3.1 node1节点配置

# 设置集群名称,集群内所有节点的名称必须一致。
cluster.name: my-esCluster
# 设置节点名称,集群内节点名称必须唯一。
node.name: node1
# 表示该节点会不会作为主节点,true表示会;false表示不会
node.master: true
# 当前节点是否用于存储数据,是:true、否:false
node.data: true
# 索引数据存放的位置
#path.data: /opt/elasticsearch/data
# 日志文件存放的位置
#path.logs: /opt/elasticsearch/logs
# 需求锁住物理内存,是:true、否:false
#bootstrap.memory_lock: true
# 监听地址,用于访问该es
network.host: 192.168.0.114
# es对外提供的http端口,默认 9200
http.port: 9200
# TCP的默认监听端口,默认 9300
transport.tcp.port: 9300
# 设置这个参数来保证集群中的节点可以知道其它N个有master资格的节点。默认为1,对于大的集群来说,可以设置大一点的值(2-4)
discovery.zen.minimum_master_nodes: 2
# es7.x 之后新增的配置,写入候选主节点的设备地址,在开启服务后可以被选为主节点
discovery.seed_hosts: ["192.168.0.114:9300", "192.168.0.114:9301", "192.168.0.114:9302"] 
discovery.zen.fd.ping_timeout: 1m
discovery.zen.fd.ping_retries: 5
# es7.x 之后新增的配置,初始化一个新的集群时需要此配置来选举master
cluster.initial_master_nodes: ["node1", "node2", "node3"]
# 是否支持跨域,是:true,在使用head插件时需要此配置
http.cors.enabled: true
# “*” 表示支持所有域名
http.cors.allow-origin: "*"
action.destructive_requires_name: true
action.auto_create_index: .security,.monitoring*,.watches,.triggered_watches,.watcher-history*
xpack.security.enabled: false
xpack.monitoring.enabled: true
xpack.graph.enabled: false
xpack.watcher.enabled: false
xpack.ml.enabled: false


3.2 node2节点配置

# 设置集群名称,集群内所有节点的名称必须一致。
cluster.name: my-esCluster
# 设置节点名称,集群内节点名称必须唯一。
node.name: node2
# 表示该节点会不会作为主节点,true表示会;false表示不会
node.master: true
# 当前节点是否用于存储数据,是:true、否:false
node.data: true
# 索引数据存放的位置
#path.data: /opt/elasticsearch/data
# 日志文件存放的位置
#path.logs: /opt/elasticsearch/logs
# 需求锁住物理内存,是:true、否:false
#bootstrap.memory_lock: true
# 监听地址,用于访问该es
network.host: 192.168.0.114
# es对外提供的http端口,默认 9200
http.port: 9201
# TCP的默认监听端口,默认 9300
transport.tcp.port: 9301
# 设置这个参数来保证集群中的节点可以知道其它N个有master资格的节点。默认为1,对于大的集群来说,可以设置大一点的值(2-4)
discovery.zen.minimum_master_nodes: 2
# es7.x 之后新增的配置,写入候选主节点的设备地址,在开启服务后可以被选为主节点
discovery.seed_hosts: ["192.168.0.114:9300", "192.168.0.114:9301", "192.168.0.114:9302"] 
discovery.zen.fd.ping_timeout: 1m
discovery.zen.fd.ping_retries: 5
# es7.x 之后新增的配置,初始化一个新的集群时需要此配置来选举master
cluster.initial_master_nodes: ["node1", "node2", "node3"]
# 是否支持跨域,是:true,在使用head插件时需要此配置
http.cors.enabled: true
# “*” 表示支持所有域名
http.cors.allow-origin: "*"
action.destructive_requires_name: true
action.auto_create_index: .security,.monitoring*,.watches,.triggered_watches,.watcher-history*
xpack.security.enabled: false
xpack.monitoring.enabled: true
xpack.graph.enabled: false
xpack.watcher.enabled: false
xpack.ml.enabled: false


3.3 node3节点配置

# 设置集群名称,集群内所有节点的名称必须一致。
cluster.name: my-esCluster
# 设置节点名称,集群内节点名称必须唯一。
node.name: node3
# 表示该节点会不会作为主节点,true表示会;false表示不会
node.master: true
# 当前节点是否用于存储数据,是:true、否:false
node.data: true
# 索引数据存放的位置
#path.data: /opt/elasticsearch/data
# 日志文件存放的位置
#path.logs: /opt/elasticsearch/logs
# 需求锁住物理内存,是:true、否:false
#bootstrap.memory_lock: true
# 监听地址,用于访问该es
network.host: 192.168.0.114
# es对外提供的http端口,默认 9200
http.port: 9202
# TCP的默认监听端口,默认 9300
transport.tcp.port: 9302
# 设置这个参数来保证集群中的节点可以知道其它N个有master资格的节点。默认为1,对于大的集群来说,可以设置大一点的值(2-4)
discovery.zen.minimum_master_nodes: 2
# es7.x 之后新增的配置,写入候选主节点的设备地址,在开启服务后可以被选为主节点
discovery.seed_hosts: ["192.168.0.114:9300", "192.168.0.114:9301", "192.168.0.114:9302"] 
discovery.zen.fd.ping_timeout: 1m
discovery.zen.fd.ping_retries: 5
# es7.x 之后新增的配置,初始化一个新的集群时需要此配置来选举master
cluster.initial_master_nodes: ["node1", "node2", "node3"]
# 是否支持跨域,是:true,在使用head插件时需要此配置
http.cors.enabled: true
# “*” 表示支持所有域名
http.cors.allow-origin: "*"
action.destructive_requires_name: true
action.auto_create_index: .security,.monitoring*,.watches,.triggered_watches,.watcher-history*
xpack.security.enabled: false
xpack.monitoring.enabled: true
xpack.graph.enabled: false
xpack.watcher.enabled: false
xpack.ml.enabled: false


4、分别启动三台elasticsearch7.6.0节点

在elasticsearch7.6.0所在目录Ctrl+shift+右键点击

image.png


打开命令行窗口

image.png


如上方法依次启动三个节点的,启动完成之后可以看到三个节点成功

image.png


5、安装集群节点管理工具cerebro

5.1 下载cerebro

下载地址:https://github.com/lmenezes/cerebro/releases

image.png


5.2 cerebro安装启动

1. 解压 cerebro-0.8.5.zip

image.png


2. 启动cerebro

打开命令行窗口,如下即可启动

image.png


3. 启动完成之后在浏览器输入

http://localhost:9000/

image.png


4. 在上图Node Address中输入节点地址

image.png


点击Connect,即可看到当前集群中三个节点状态

image.png


如此完成集群搭建

参考文档


相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
相关文章
|
2月前
|
存储 负载均衡 Java
Elasticsearch集群面试系列文章一
【9月更文挑战第9天】Elasticsearch(简称ES)是一种基于Lucene构建的分布式搜索和分析引擎,广泛用于全文搜索、结构化搜索、分析以及日志实时分析等场景。
103 7
|
2天前
|
存储 监控 安全
Elasticsearch 集群
【11月更文挑战第3天】
73 54
|
3月前
|
存储 缓存 监控
|
3月前
|
存储 监控 负载均衡
检索服务elasticsearch集群(Cluster)
【8月更文挑战第23天】
63 3
|
29天前
|
存储 缓存 监控
深入解析:Elasticsearch集群性能调优策略与最佳实践
【10月更文挑战第8天】Elasticsearch 是一个分布式的、基于 RESTful 风格的搜索和数据分析引擎,它能够快速地存储、搜索和分析大量数据。随着企业对实时数据处理需求的增长,Elasticsearch 被广泛应用于日志分析、全文搜索、安全信息和事件管理(SIEM)等领域。然而,为了确保 Elasticsearch 集群能够高效运行并满足业务需求,需要进行一系列的性能调优工作。
62 3
|
1月前
|
SQL 分布式计算 NoSQL
大数据-170 Elasticsearch 云服务器三节点集群搭建 测试运行
大数据-170 Elasticsearch 云服务器三节点集群搭建 测试运行
38 4
|
2月前
|
存储 自然语言处理 关系型数据库
ElasticSearch基础3——聚合、补全、集群。黑马旅游检索高亮+自定义分词器+自动补全+前后端消息同步
聚合、补全、RabbitMQ消息同步、集群、脑裂问题、集群分布式存储、黑马旅游实现过滤和搜索补全功能
ElasticSearch基础3——聚合、补全、集群。黑马旅游检索高亮+自定义分词器+自动补全+前后端消息同步
|
3月前
|
存储 监控 负载均衡
Elasticsearch 集群副本
【8月更文挑战第24天】
68 13
|
3月前
|
存储 负载均衡 监控
Elasticsearch 集群分片
【8月更文挑战第24天】
82 12
|
2月前
|
JSON 监控 Java
Elasticsearch 入门:搭建高性能搜索集群
【9月更文第2天】Elasticsearch 是一个分布式的、RESTful 风格的搜索和分析引擎,基于 Apache Lucene 构建。它能够处理大量的数据,提供快速的搜索响应。本教程将指导你如何从零开始搭建一个基本的 Elasticsearch 集群,并演示如何进行简单的索引和查询操作。
194 3
下一篇
无影云桌面