JDK集合源码之HashSet解析

本文涉及的产品
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: HashSet简介

HashSet的特点

  • 无序性(存储元素无序)
  • 唯一性(允许使用null
  • 本质上,HashSet底层是通过HashMap来保证唯一性
  • HashSet没有提供get()方法,同HashMap一样,因为Set内部是无序的,所以只能通过迭代的方式获得

HashSet的继承体系


image.png

HashSet源码分析

1. 属性(成员变量)

// HashSet内部使用HashMap来存储元素,因此本质上是HashMap
private transient HashMap<E,Object> map;
// 虚拟对象,用来作为value放到map中(在HashSet底层的HashMap中,key为要存储的元素,value统一为PRESENT)
private static final Object PRESENT = new Object();

2. 构造方法

public HashSet() {
    map = new HashMap<>();
}
public HashSet(Collection<? extends E> c) {
    map = new HashMap<>(Math.max((int) (c.size()/.75f) + 1, 16));
    addAll(c);
}
public HashSet(int initialCapacity, float loadFactor) {
    map = new HashMap<>(initialCapacity, loadFactor);
}
public HashSet(int initialCapacity) {
    map = new HashMap<>(initialCapacity);
}
// 注意:这里未用public修饰,主要是给LinkedHashSet使用的
HashSet(int initialCapacity, float loadFactor, boolean dummy) {
    map = new LinkedHashMap<>(initialCapacity, loadFactor);
}


构造方法都是调用HashMap对应的构造方法。最后一个构造方法有点特殊,它不是public的,意味着它只能被同一个包或者子类调用,这是LinkedHashSet专属的方法。

3. 成员方法

3.1 添加元素add(E e)

// HashSet添加元素的时候,直接调用的是HashMap中的put()方法,
// 把元素本身作为key,把PRESENT作为value,也就是这个map中所有的value都是一样的。
public boolean add(E e) {
    return map.put(e, PRESENT)==null;
}

3.2 删除元素remove(Object o)

// HashSet删除元素,直接调用HashMap的remove方法
public boolean remove(Object o) {
    // 注意:map的remove返回是删除元素的value,而Set的remov返回的是boolean类型
    // 如果是null的话说明没有该元素,如果不是null肯定等于PRESENT
    return map.remove(o)==PRESENT;
}

3.3 查找元素contains(Object o)

// Set中没有get()方法,不像List那样可以按index获取元素
public boolean contains(Object o) {
    return map.containsKey(o);
}

4. 完整代码

HashSet是基于HashMap的,所以其源码较少:

package java.util;
import java.io.InvalidObjectException;
import sun.misc.SharedSecrets;
public class HashSet<E>
    extends AbstractSet<E>
    implements Set<E>, Cloneable, java.io.Serializable
{
    static final long serialVersionUID = -5024744406713321676L;
    // 内部元素存储在HashMap中
    private transient HashMap<E,Object> map;
    // 虚拟元素,用来存到map元素的value中的,没有实际意义
    private static final Object PRESENT = new Object();
    // 空构造方法
    public HashSet() {
        map = new HashMap<>();
    }
    // 把另一个集合的元素全都添加到当前Set中
    // 注意,这里初始化map的时候是计算了它的初始容量的
    public HashSet(Collection<? extends E> c) {
        map = new HashMap<>(Math.max((int) (c.size()/.75f) + 1, 16));
        addAll(c);
    }
    // 指定初始容量和装载因子
    public HashSet(int initialCapacity, float loadFactor) {
        map = new HashMap<>(initialCapacity, loadFactor);
    }
    // 只指定初始容量
    public HashSet(int initialCapacity) {
        map = new HashMap<>(initialCapacity);
    }
    // LinkedHashSet专用的方法
    // dummy是没有实际意义的, 只是为了跟上上面那个操持方法签名不同而已
    HashSet(int initialCapacity, float loadFactor, boolean dummy) {
        map = new LinkedHashMap<>(initialCapacity, loadFactor);
    }
    // 迭代器
    public Iterator<E> iterator() {
        return map.keySet().iterator();
    }
    // 元素个数
    public int size() {
        return map.size();
    }
    // 检查是否为空
    public boolean isEmpty() {
        return map.isEmpty();
    }
    // 检查是否包含某个元素
    public boolean contains(Object o) {
        return map.containsKey(o);
    }
    // 添加元素
    public boolean add(E e) {
        return map.put(e, PRESENT)==null;
    }
    // 删除元素
    public boolean remove(Object o) {
        return map.remove(o)==PRESENT;
    }
    // 清空所有元素
    public void clear() {
        map.clear();
    }
    // 克隆方法
    @SuppressWarnings("unchecked")
    public Object clone() {
        try {
            HashSet<E> newSet = (HashSet<E>) super.clone();
            newSet.map = (HashMap<E, Object>) map.clone();
            return newSet;
        } catch (CloneNotSupportedException e) {
            throw new InternalError(e);
        }
    }
    // 序列化写出方法
    private void writeObject(java.io.ObjectOutputStream s)
        throws java.io.IOException {
        // 写出非static非transient属性
        s.defaultWriteObject();
        // 写出map的容量和装载因子
        s.writeInt(map.capacity());
        s.writeFloat(map.loadFactor());
        // 写出元素个数
        s.writeInt(map.size());
        // 遍历写出所有元素
        for (E e : map.keySet())
            s.writeObject(e);
    }
    // 序列化读入方法
    private void readObject(java.io.ObjectInputStream s)
        throws java.io.IOException, ClassNotFoundException {
        // 读入非static非transient属性
        s.defaultReadObject();
        // 读入容量, 并检查不能小于0
        int capacity = s.readInt();
        if (capacity < 0) {
            throw new InvalidObjectException("Illegal capacity: " +
                                             capacity);
        }
        // 读入装载因子, 并检查不能小于等于0或者是NaN(Not a Number)
        // java.lang.Float.NaN = 0.0f / 0.0f;
        float loadFactor = s.readFloat();
        if (loadFactor <= 0 || Float.isNaN(loadFactor)) {
            throw new InvalidObjectException("Illegal load factor: " +
                                             loadFactor);
        }
        // 读入元素个数并检查不能小于0
        int size = s.readInt();
        if (size < 0) {
            throw new InvalidObjectException("Illegal size: " +
                                             size);
        }
        // 根据元素个数重新设置容量
        // 这是为了保证map有足够的容量容纳所有元素, 防止无意义的扩容
        capacity = (int) Math.min(size * Math.min(1 / loadFactor, 4.0f),
                HashMap.MAXIMUM_CAPACITY);
        // 再次检查某些东西, 不重要的代码忽视掉
        SharedSecrets.getJavaOISAccess()
                     .checkArray(s, Map.Entry[].class, HashMap.tableSizeFor(capacity));
        // 创建map, 检查是不是LinkedHashSet类型
        map = (((HashSet<?>)this) instanceof LinkedHashSet ?
               new LinkedHashMap<E,Object>(capacity, loadFactor) :
               new HashMap<E,Object>(capacity, loadFactor));
        // 读入所有元素, 并放入map中
        for (int i=0; i<size; i++) {
            @SuppressWarnings("unchecked")
                E e = (E) s.readObject();
            map.put(e, PRESENT);
        }
    }
    // 可分割的迭代器, 主要用于多线程并行迭代处理时使用
    public Spliterator<E> spliterator() {
        return new HashMap.KeySpliterator<E,Object>(map, 0, -1, 0, 0);
    }
}

总结

HashSet内部使用HashMap的key存储元素,以此来保证元素不重复;

HashSet是无序的,因为HashMap的key是无序的;

HashSet中允许有一个null元素,因为HashMap允许key为null;

HashSet是非线程安全的;

HashSet是没有get()方法的;

扩展:


当向HashMap中存储n个元素时,它的初始化容量应指定为:((n/0.75f) + 1),如果这个值小于16,就直接使用16为容量。初始化时指定容量是为了减少扩容的次数,提高效率。


LinkedHashSet分析

package java.util;
// LinkedHashSet继承自HashSet
public class LinkedHashSet<E>
    extends HashSet<E>
    implements Set<E>, Cloneable, java.io.Serializable {
    private static final long serialVersionUID = -2851667679971038690L;
    // 传入容量和装载因子
    public LinkedHashSet(int initialCapacity, float loadFactor) {
        super(initialCapacity, loadFactor, true);
    }
    // 只传入容量, 装载因子默认为0.75
    public LinkedHashSet(int initialCapacity) {
        super(initialCapacity, .75f, true);
    }
    // 使用默认容量16, 默认装载因子0.75
    public LinkedHashSet() {
        super(16, .75f, true);
    }
    // 将集合c中的所有元素添加到LinkedHashSet中
    // 好奇怪, 这里计算容量的方式又变了
    // HashSet中使用的是Math.max((int) (c.size()/.75f) + 1, 16)
    // 这一点有点不得其解, 是作者偷懒?
    public LinkedHashSet(Collection<? extends E> c) {
        super(Math.max(2*c.size(), 11), .75f, true);
        addAll(c);
    }
    // 可分割的迭代器, 主要用于多线程并行迭代处理时使用
    @Override
    public Spliterator<E> spliterator() {
        return Spliterators.spliterator(this, Spliterator.DISTINCT | Spliterator.ORDERED);
    }
}

LinkedHashSet继承自HashSet,它的添加、删除、查询等方法都是直接用的HashSet的,唯一的不同就是它使用LinkedHashMap存储元素。

LinkedHashSet是有序的,它是按照插入的顺序排序的。

LinkedHashSet是不支持按访问顺序对元素排序的,只能按插入顺序排序。

因为,LinkedHashSet所有的构造方法都是调用HashSet的同一个构造方法,如下:

  // HashSet的构造方法
    HashSet(int initialCapacity, float loadFactor, boolean dummy) {
        map = new LinkedHashMap<>(initialCapacity, loadFactor);
    }

通过调用LinkedHashMap的构造方法初始化map,如下所示:

    public LinkedHashMap(int initialCapacity, float loadFactor) {
        super(initialCapacity, loadFactor);
        accessOrder = false;
    }

可以看到,这里把accessOrder写死为false了。

所以,LinkedHashSet是不支持按访问顺序对元素排序的,只能按插入顺序排序。

相关文章
|
14天前
|
存储 Java
深入探讨了Java集合框架中的HashSet和TreeSet,解析了两者在元素存储上的无序与有序特性。
【10月更文挑战第16天】本文深入探讨了Java集合框架中的HashSet和TreeSet,解析了两者在元素存储上的无序与有序特性。HashSet基于哈希表实现,添加元素时根据哈希值分布,遍历时顺序不可预测;而TreeSet利用红黑树结构,按自然顺序或自定义顺序存储元素,确保遍历时有序输出。文章还提供了示例代码,帮助读者更好地理解这两种集合类型的使用场景和内部机制。
33 3
|
23天前
|
算法 Java 容器
Map - HashSet & HashMap 源码解析
Map - HashSet & HashMap 源码解析
48 0
|
19天前
|
Java 关系型数据库 MySQL
【编程基础知识】Eclipse连接MySQL 8.0时的JDK版本和驱动问题全解析
本文详细解析了在使用Eclipse连接MySQL 8.0时常见的JDK版本不兼容、驱动类错误和时区设置问题,并提供了清晰的解决方案。通过正确配置JDK版本、选择合适的驱动类和设置时区,确保Java应用能够顺利连接MySQL 8.0。
90 1
|
30天前
|
缓存 Java 索引
查看并解析当前jdk的垃圾收集器
本文介绍了如何查看和解析当前JDK使用的垃圾收集器,通过在IDEA中配置JVM选项并运行示例代码来展示G1垃圾回收器的详细信息和命令行标志。
22 0
查看并解析当前jdk的垃圾收集器
|
3月前
|
算法 安全 Java
深入JDK源码:揭开ConcurrentHashMap底层结构的神秘面纱
【8月更文挑战第24天】`ConcurrentHashMap`是Java并发编程中不可或缺的线程安全哈希表实现。它通过精巧的锁机制和无锁算法显著提升了并发性能。本文首先介绍了早期版本中使用的“段”结构,每个段是一个带有独立锁的小型哈希表,能够减少线程间竞争并支持动态扩容以应对高并发场景。随后探讨了JDK 8的重大改进:取消段的概念,采用更细粒度的锁控制,并引入`Node`等内部类以及CAS操作,有效解决了哈希冲突并实现了高性能的并发访问。这些设计使得`ConcurrentHashMap`成为构建高效多线程应用的强大工具。
52 2
|
5月前
|
存储 缓存 算法
滚雪球学Java(62):HashSet的底层实现原理解析
【6月更文挑战第16天】🏆本文收录于「滚雪球学Java」专栏,专业攻坚指数级提升,希望能够助你一臂之力,帮你早日登顶实现财富自由🚀;同时,欢迎大家关注&&收藏&&订阅!持续更新中,up!up!up!!
39 3
滚雪球学Java(62):HashSet的底层实现原理解析
|
5月前
|
Java Spring
深入解析Spring源码,揭示JDK动态代理的工作原理。
深入解析Spring源码,揭示JDK动态代理的工作原理。
56 0
|
2月前
|
Java
安装JDK18没有JRE环境的解决办法
安装JDK18没有JRE环境的解决办法
256 3
|
3月前
|
Java 关系型数据库 MySQL
"解锁Java Web传奇之旅:从JDK1.8到Tomcat,再到MariaDB,一场跨越数据库的冒险安装盛宴,挑战你的技术极限!"
【8月更文挑战第19天】在Linux上搭建Java Web应用环境,需安装JDK 1.8、Tomcat及MariaDB。本指南详述了使用apt-get安装OpenJDK 1.8的方法,并验证其版本。接着下载与解压Tomcat至`/usr/local/`目录,并启动服务。最后,通过apt-get安装MariaDB,设置基本安全配置。完成这些步骤后,即可验证各组件的状态,为部署Java Web应用打下基础。
55 1
|
3月前
|
Oracle Java 关系型数据库
Mac安装JDK1.8
Mac安装JDK1.8
661 4

推荐镜像

更多