伯克利教授Stuart Russell:人工智能的过去、现在和未来

简介: 全球机器智能峰会(GMIS 2017),是全球人工智能产业信息服务平台机器之心举办的首届大会,邀请了来自美国、欧洲、加拿大及国内的众多顶级专家参会演讲。

全球机器智能峰会(GMIS 2017),是全球人工智能产业信息服务平台机器之心举办的首届大会,邀请了来自美国、欧洲、加拿大及国内的众多顶级专家参会演讲。本次大会共计 47 位嘉宾、5 个 Session、32 场演讲、4 场圆桌论坛、1 场人机大战,兼顾学界与产业、科技巨头与创业公司,以专业化、全球化的视角为人工智能从业者和爱好者奉上一场机器智能盛宴。


5 月 28 日,机器之心主办的为期两天的全球机器智能峰会(GMIS 2017)进入第二天,全天议程中最受关注的是多位重要嘉宾出席的领袖峰会,包括《人工智能:一种现代方法》的作者 Stuart Russell、第四范式联合创始人兼首席科学家杨强、科大讯飞执行总裁兼消费者事业群总裁胡郁、阿尔伯塔大学教授及计算机围棋顶级专家 Martin Müller、Element AI 联合创始人 Jean-Sebastien Cournoyer 等。


微信图片_20211128191103.jpg


Stuart Russell 是加州大学伯克利分校人工智能统计中心创始人兼计算机科学专业教授,一直关注人工智能领域的发展。同时,他还是人工智能领域里标准教科书《人工智能:一种现代化方法》的作者。作为当天的第一名演讲嘉宾,Stuart Russell 带领现场观众进行了一场关于《人工智能的过去、现在和未来》的探索,观往知来,全面解析人工智能的奥秘。


微信图片_20211128191106.jpg


「很长一段时间以来,大家都不知道人工智能是什么,我们一直在想应该对它有一个怎样的定义。」Russell 说,人工智能是一个内涵丰富的学科,其内容涉及哲学、数学、神经科学等学科与领域。


同时,人工智能也不是一个新学科。在二十世纪四十年代,人们就在思考如何使用一些新工具;五十年代的时候,已经有很多会议呼吁各学科的人们一起来共同创造人工智能。「但后来的情况怎么样?它们都分开了,这是因为所有的这些学科缺乏一种通用的数学语言。」创造一种通用的数学语言来涵盖所有学科是一件困难的事,尽管目前还无法实现,但是人们正朝着这样的方向前进。六十年代时,这个领域已经有一些可以看得到的进展,人们是非常乐观的;但到了七十年代左右,大家逐渐变得失望;在八十年代的人工智能寒冬之时,许多公司已经开始赔钱,人工智能成为一个大家不喜欢的词语。


现在,人们开始认真地看待人工智能,迎来了人工智能爆炸的奇迹。许多初创公司开始专注于人工智能的发展,像谷歌、IBM 等巨头公司也投入到人工智能的研究中。同时,人们也看到了神经科学的进步以及计算机资源、大数据的发展。


微信图片_20211128191109.jpg

随后,Russell 详细介绍了有监督学习方法。在深度学习需要使用卷积神经网络的时候,属于一种有监督的学习,也是人工智能的一部分。这里的数据是有标签的,同时还涉及一些包括线性模型、逻辑回归、神经网络、决策树的假设方法,进而对未来的案例进行推论。


微信图片_20211128191111.jpg

Russell 用一个简单的物体识别例子给了大家更清晰的认知。


微信图片_20211128191114.jpg


那么,为什么要进行深度学习呢?


微信图片_20211128191116.jpg


2015 年,机器已经具有超越人类的表现,这中间 ImageNet 数据集是功不可没的。不过,机器在视觉方面也有逊于人类的表现,可能出现各种各样的错误,包括物体的遮挡、视图的扭曲、一张图片中存在多对象类别或是超级类别、子类别的混乱等情况。


另外,Russell 举了 AlphaGo 战胜李世石的例子。「AlphaGo 包含了很多技术,一种就是深度学习,也用到了蒙特卡罗树搜索,可以得到非常高效的结果,它可以追溯到 1950 年代的一些复杂但是经典的搜索方法。另一方面,人工智能很多领域的发展也促成了 AlphaGo 的成功,比如支持深度学习的硬件发展。」刚刚输给 AlphaGo 的柯洁也曾说,去年跟 AlphaGo 下棋的时候好像还是在跟人下棋,而今年他觉得好像是跟上帝下棋一样。


接下来,Russell 分享了一些他对与人工智能的看法。


微信图片_20211128191120.jpg


他认为,虽然现在所有的发展都是非常让人欣慰的,但是确实还是噱头在里。人们需要审慎考虑,不要因为过度的期待而觉得失望。在大家对人工智能取得巨大进步而感到自豪的时候,也有可能出现 AI 的寒冬。「我们上一次 AI 寒冬是因为这个技术的前景和一些承诺。很多人可能都不太记得当时的内容,是 1980 年左右的一些技术,当把它放到真实的世界当中时并不是非常的奏效。那时深度学习也不太受欢迎。但是如今我们可以更新现代的技术,可能未来对训练资料、数据的要求也不用再那么高。」对此,Russell 称,假设让一个小孩看大象的图片,给小孩子两、三张大象的图片他就能够识别了,而非给他 4000 多张图片进行训练。所以可能将来技术先进到一定程度的时候,人们对它的依赖就不再那么大。


过去五十年的 AI 发展给人们的一大启示——知识是非常重要的,人类能够高效的学习是因为一开始人类就有很多知识,知识使得人类能够从非常少的案例中完成学习。这里,Russell 提到了一种概率规划,并举例核武器测试网点等概率规划的应用。


微信图片_20211128191122.jpg


对于人工智能的现在、未来以及眼下仍无法实现的问题,Russell 也给出了自己的观点。


微信图片_20211128191129.png

微信图片_20211128191131.jpg


「虽然我们缺失的东西很多,但是我们已经能够预见到,不远的讲来,AI 系统就能够像人类一样,具备相同的能力了。」有的人可能认为这是一个天方夜谭,但是 1933 年,一位非常有名的物理学家 Lord Rutherford 曾说过,任何想抽取原子转变能力的人都是在在异想天开。然而第二天 Leo Szilard 就发明了中子诱导核链式反应。


人工智能可以让人类做更多的事情,把人类文明推向更积极的方向。但是也有出现杀人机器的可能性,成为一种大规模杀伤性武器新品种,引起人们的种种担忧。


微信图片_20211128191134.jpg


问题的关键是,人们需要确保给机器赋予的这些功能确实是想让它拥有的,但是也可能人们赋予它的功能并不是人们最初期待的。Russell 举了点石成金的国王将食物、水、饮料,甚至他的女儿都变成了金子后痛苦去世的故事。对于这个问题,Russell 的见解是要改变 AI 的定义,AI 系统要能够被证明可以给人类带来益处。为了实现这个目标,有三个简单的方法:「第一点,机器人的目标就是使得人类的意愿最大化的实现,就是说机器应该使得人类的意愿得到满意,而不是让机器给我们创造一种让人类感觉不舒适生活。第二点,机器人不知道什么是价值,我们不要给机器有一个固定的价值系统。第三点,人类的行为给机器提供参考。」


微信图片_20211128191137.jpg


演讲的最后,Russell 提出了两个非常有趣的例子。第一个例子是关于个人助手要帮助更需要晚餐的人而选择不帮助主人准备晚餐。


微信图片_20211128191139.jpg


第二个例子是孩子在家感到饥饿的时候,家里冰箱没有东西,机器人选择家里的猫作为食材准备晚餐。


微信图片_20211128191142.jpg


这样的机器人是好是坏?未来人工智能到底会走向何处?Russell 给出了自己的答案:「AI 需要对人类有贡献,要想做到这点是一个技术性的问题,我相信我们能够解决这个问题。」微信图片_20211128180742.png


更多有关GMIS 2017大会的内容,请点击「阅读原文」查看机器之心官网 GMIS 专题↓↓↓

微信图片_20211128191146.jpg

相关文章
|
5月前
|
分布式计算 NoSQL 物联网
麻省理工IOT教授撰写的1058页Python程序设计人工智能实践手册!
Python是世界上最流行的语言之一,也是编程语言中使用人数增长最快的一种。 开发者经常会很快地发现自己喜欢Python。他们会欣赏Python的表达力、可读性、简洁性和交互性,也会喜欢开源软件开发环境,这个开源环境正在为广泛的应用领域提供快速增长的可重用软件基础。 几十年来,一些趋势已经强有力地显现出来。计算机硬件已经迅速变得更快、更便宜、更小;互联网带宽已经迅速变得越来越大,同时也越来越便宜;优质的计算机软件已经变得越来越丰富,并且通过“开源”方式免费或几乎免费;很快,“物联网”将连接数以百亿计的各种可想象的设备。这将导致以快速增长的速度和数量生成大量数据。 在今天的计算技术中,最新的创新
|
5月前
|
分布式计算 NoSQL 物联网
麻省理工IOT教授撰写的1058页Python程序设计人工智能实践手册!
Python是世界上最流行的语言之一,也是编程语言中使用人数增长最快的一种。 开发者经常会很快地发现自己喜欢Python。他们会欣赏Python的表达力、可读性、简洁性和交互性,也会喜欢开源软件开发环境,这个开源环境正在为广泛的应用领域提供快速增长的可重用软件基础。
|
6月前
|
人工智能 数据挖掘 大数据
538个代码示例!麻省理工教授的Python程序设计+人工智能案例实践
Python简单易学,且提供了丰富的第三方库,可以用较少的代码完成较多的工作,使开发者能够专注于如何解决问题而只花较少的时间去考虑如何编程。 此外,Python还具有免费开源、跨平台、面向对象、胶水语言等优点,在系统编程、图形界面开发、科学计算、Web开发、数据分析、人工智能等方面有广泛应用。 尤其是在数据分析和人工智能方面,Python已成为最受开发者欢迎的编程语言之一,不仅大量计算机专业人员选择使用Python进行快速开发,许多非计算机专业人员也纷纷选择Python语言来解决专业问题。 由于Python应用广泛,关于Python的参考书目前已经有很多,但将Python编程与数据分析、人工智
|
6月前
|
人工智能 数据挖掘 大数据
538个代码示例!麻省理工教授的Python程序设计+人工智能案例实践
Python简单易学,且提供了丰富的第三方库,可以用较少的代码完成较多的工作,使开发者能够专注于如何解决问题而只花较少的时间去考虑如何编程。 此外,Python还具有免费开源、跨平台、面向对象、胶水语言等优点,在系统编程、图形界面开发、科学计算、Web开发、数据分析、人工智能等方面有广泛应用。 尤其是在数据分析和人工智能方面,Python已成为最受开发者欢迎的编程语言之一,不仅大量计算机专业人员选择使用Python进行快速开发,许多非计算机专业人员也纷纷选择Python语言来解决专业问题。 由于Python应用广泛,关于Python的参考书目前已经有很多,但将Python编程与数据分析、人工智
|
人工智能
AI时代已来,吴恩达呼吁向每个孩子教授人工智能知识
AI时代已来,吴恩达呼吁向每个孩子教授人工智能知识
109 0
AI时代已来,吴恩达呼吁向每个孩子教授人工智能知识
|
机器学习/深度学习 人工智能 自然语言处理
汪军教授组织了7位AI学者,论道ChatGPT后的通用人工智能理论和应用
汪军教授组织了7位AI学者,论道ChatGPT后的通用人工智能理论和应用
144 0
|
机器学习/深度学习 设计模式 人工智能
清华大学周伯文教授:从原则到实践解读多模态人工智能进展与可信赖AI
清华大学周伯文教授:从原则到实践解读多模态人工智能进展与可信赖AI
134 0
|
机器学习/深度学习 存储 敏捷开发
斯坦福教授曼宁AAAS特刊发文:大模型已成突破,展望通用人工智能
斯坦福教授曼宁AAAS特刊发文:大模型已成突破,展望通用人工智能
193 0
|
传感器 人工智能
AI:2020年6月21日北京智源大会演讲分享之14:25-14:50秦兵教授《打开人工智能情感之门》
AI:2020年6月21日北京智源大会演讲分享之14:25-14:50秦兵教授《打开人工智能情感之门》
AI:2020年6月21日北京智源大会演讲分享之14:25-14:50秦兵教授《打开人工智能情感之门》
|
机器学习/深度学习 传感器 人工智能
专访香港科技大学教授杨强:国内的人工智能研究不能太跟风
  杨强,香港科技大学计算机科学与工程学系系主任,人工智能领域学术界的领军人物,华人界唯一的国际人工智能协会 (AAAI)councilor,IEEE 大数据期刊主编,ACM 杰出科学家。两次获得国际数据挖掘领域最高级别竞赛 KDD Cup 世界冠军。杨强教授发表论文 400 多篇,被引用超过 20000 次。   但同时,除了扎根科研界,杨强教授还是人工智能领域深入商业应用领域的顶级专家之一。目前,杨强教授担任人工智能技术与服务提供商第四范式的首席科学家,带领这家被广泛看好的人工智能公司不断取得科技突破,近期第四范式在乌镇世界互联网大会上发布了可供大部分互联网公司使用的人工智能公有云产品,
905 0