Java中方法调用分析!详细解析静态分派和动态分派的执行过程

本文涉及的产品
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
全局流量管理 GTM,标准版 1个月
简介: 本篇文章中介绍了Java中的方法调用以及方法的解析和执行过程。分析了在Java中方法的静态分派和动态分派的执行过程。最后分析了在虚拟机中静态分派和动态分派的实现方式。通过这篇文章的学习,可以帮助我们很好地认识Java中的方法的执行情况。

方法调用

  • 在程序运行时,进行方法调用是最普遍,最频繁的操作
  • 方法调用不等于方法执行:

    • 方法调用阶段唯一的任务就是确定被调用的方法版本,即调用哪一个方法
    • 不涉及方法内部的具体运行过程
  • Class文件的编译过程不包括传统编译中的连接步骤
  • Class文件中的一切方法调用在Class文件里面存储的都是符号引用,而不是方法在在实际运行时内存布局中的入口地址,即之前的直接引用:

    • 这样使得Java具有更强大的动态扩展能力
    • 同时也使得Java方法调用过程变得相对复杂
    • 需要在类加载期间,甚至会到运行期间才能确定目标方法的直接引用

方法解析

  • 所有方法调用中的目标方法在Class文件里都是一个常量池的引用
  • 在类的加载解析阶段,会将其中的一部分符号引用转化为直接引用:

    • 方法在程序真正执行之前就有一个可确定的调用版本,并且这个方法的调用版本在运行期是不可改变的
    • 也就是说,调用目标在程序代码中完成,编译器进行编译时就必须确定下来,这也叫做方法解析

Java方法分类

  • 在Java中符合 "编译期可知,运行期不可变" 的方法有两大类:

    • 静态方法: 与类型直接关联
    • 私有方法: 在外部不可被访问
    • 这两种方法各自的特点决定这两种方法都不可能通过继承或者别的方式重写版本,因此适合在类加载阶段进行解析
  • 非虚方法: 在类加载阶段会把符号引用解析为该方法的直接引用

    • 静态方法
    • 私有方法
    • 实例构造器
    • 父类方法
  • 虚方法: 在类加载阶段不会将符号引用解析为该方法的直接引用

    • 除去以上的非虚方法,其它的方法均为虚方法

静态分派

public class StaticDispatch {
    static abstract class Human {
    }
    
    static class Man extends Human {
    }
    static class Woman extends Human {
    }

    public static void sayHello(Human guy) {
        System.out.println("Hello, Guy!");
    }
    public static void sayHello(Man guy) {
        System.out.println("Hello, Gentleman!");
    }
    public static void sayHello(woman guy) {
        System.out.println("Hello, Lady!");
    }

    public static void main(String[] args) {
        Human man = new Man();
        Human women = new Woman();
        
        sayHello(man);
        sayHello(woman);
         
    }
}
Human man = new Human();
  • Human为变量的静态类型
  • Man为变量的实际类型
  • 静态类型和实际类型在程序中都会放生变化:

    • 静态类型:

      • 静态类型的变化仅仅在使用时发生
      • 变量本身的静态类型不会被改变
      • 最终的静态类型在编译器中可知
    • 实际类型:

      • 实际类型变化的结果在运行期才确定下来
      • 编译器在编译期间并不知道一个对象的实际类型是什么
Human human = new Man();
sayHello(man);
sayHello((Man)man);        // 类型转换,静态类型变化,转型后的静态类型一定是Man
man = new woman();        // 实际类型变化,实际类型是不确定的
sayHello(man);
sayHello((Woman)man);    // 类型转换,静态类型变化
  • 编译器在重载时是通过参数的静态类型而不是实际类型作为判断依据,静态类型在编译期间可以知道:

    • 编译阶段,Javac编译器会根据参数的静态类型决定使用哪个重载版本
  • 静态分派:

    • 所有依赖静态类型来定位方法的执行版本的分派动作
    • 典型应用 :方法重载
  • 静态分派发生在编译阶段,因此确定静态分派的的动作不是由虚拟机执行的,而是由编译器完成的
  • 由于字面量没有显示静态类型,只能通过语言上的规则去理解和推断
public class LiteralTest {
    public static void sayHello(char arg) {
        System.out.println("Hello, char!");
    }
    public static void sayHello(int arg) {
        System.out.println("Hello, int!");
    }
    public static void sayHello(long arg) {
        System.out.println("Hello, long!");
    }
    public static void sayHello(Character arg) {
        System.out.println("Hello, Character!");
    }
    public static void main(String[] arg) {
        sayHello('a');
    }
}
  • 编译器将重载方法从上向下依次注释,得到不同的输出
  • 如果编译器无法确定要自定转型为哪种类型,会提示类型模糊,拒绝编译
public class LiteralTest {
    public static void sayHello(String arg) {    // 新增重载方法
        System.out.println("Hello, String!");
    }
    public static void sayHello(char arg) {    
        System.out.println("Hello, char!");
    }
    public static void sayHello(int arg) {
        System.out.println("Hello, int!");
    }
    public static void sayHello(long arg) {
        System.out.println("Hello, long!");
    }
    public static void sayHello(Character arg) {
        System.out.println("Hello, Character!");
    }
    public static void main(String[] args) {
        Random r = new Random();
        String s = "abc";
        int i = 0;
        sayHello(r.nextInt() % 2 != 0 ? s : 1 );    // 编译错误
        sayHello(r.nextInt() % 2 != 0 ? 'a' : false);    //编译错误
    }
}

动态分派

public class DynamicDispatch {
    static abstract class Human {
        protected abstract void sayHello();
    }
    
    static class Man extends Human {
        @override
        protected void sayHello() {
            System.out.println("Man Say Hello!");
        }
    }
    static class Woman extends Human {
        @override
        protected void sayHello() {
            System.out.println("Woman Say Hello!");
        }
    }
    
    public static void main(String[] args) {
        Human man = new Man();
        Human women = new Woman();
        man.sayHello();
        woman.sayHello();
        man = new Woman();
        man.sayHello();
    }
}
  • 这里不是根据静态类型决定的

    • 静态类型的Human两个变量manwoman在调用sayHello() 方法时执行了不同的行为
    • 变量man在两次调用中执行了不同的方法
  • 导致这个现象的额原因 :这两个变量的实际类型不同
  • Java虚拟机是如何根据实际类型分派方法的执行版本的:invokevirtual指令的多态查找过程开始 ,invokevirtual指令运行时解析过程大致分为以下几个步骤:

    • 找到操作数栈顶的第一个元素所指向的对象的实际类型,记作C
    • 如果在类型C中找到与常量中的描述符和简单名称相符合的方法,然后进行访问权限验证,如果验证通过则返回这个方法的直接引用,查找过程结束;如果验证不通过,则抛出java.lang.illegalAccessError异常
    • 如果未找到,就按照继承关系从下往上依次对类型C的各个父类进行第二步的搜索和验证过程
    • 如果始终没有找到合适的方法,则抛出java.lang.AbstractMethodError异常
  • Java语言方法重写的本质:

    • invokevirtual指令执行的第一步就是在运行时期确定接收者的实际类型,所以两次调用中的invokevirtual指令把常量池中的类方法符号引用解析到了不同的直接引用上
  • 这种在运行时期根据实际类型确定方法执行版本的分派过程就叫做动态分派

虚拟机动态分派的实现

  • 虚拟机概念解析的模式就是静态分派和动态分派,可以理解虚拟机在分派中 "会做什么" 这个问题
  • 虚拟机 "具体是如何做到的" 在各种虚拟机实现上会有差别:

    • 由于动态分派是非常频繁的动作,而且动态分派的方法版本选择过程需要运行时在类的方法元数据中搜索合适的目标方法

      • 因此在虚拟机的实际实现中,为了基于性能的考虑,大部分实现都不会真正的进行如此频繁的搜索
      • 最常用的"稳定优化"的方式是为类在方法区中建立一个虚方法表(Virtual Method Table,即vtable), 使用虚方法表索引代替元数据查找以提高性能

        • 虚方法表中存放着各个方法的实际入口地址:

          • 如果某个方法在子类中没有被重写,那子类的虚方法表里面的地址入口和父类相同方法的地址入口是一致的,都指向父类的实际入口
          • 如果子类中重写了这个方法,子类方法表中的地址将会替换为指向子类实际方法的入口地址
        • 具有相同签名的方法,在父类,子类的虚方法表中具有一样的索引序号:

          • 这样当类型变换时,仅仅需要变更查找的方法表,就可以从不同的虚方法表中按索引转换出所需要的入口地址
        • 方法表一般在类加载阶段的连接阶段进行初始化:

          • 准备了类的变量初始值后,虚拟机会把该类的方法表也初始化完毕
相关文章
|
26天前
|
存储 缓存 安全
Java内存模型深度解析:从理论到实践####
【10月更文挑战第21天】 本文深入探讨了Java内存模型(JMM)的核心概念与底层机制,通过剖析其设计原理、内存可见性问题及其解决方案,结合具体代码示例,帮助读者构建对JMM的全面理解。不同于传统的摘要概述,我们将直接以故事化手法引入,让读者在轻松的情境中领略JMM的精髓。 ####
33 6
|
21天前
|
Java 编译器
Java 泛型详细解析
本文将带你详细解析 Java 泛型,了解泛型的原理、常见的使用方法以及泛型的局限性,让你对泛型有更深入的了解。
32 2
Java 泛型详细解析
|
21天前
|
缓存 监控 Java
Java线程池提交任务流程底层源码与源码解析
【11月更文挑战第30天】嘿,各位技术爱好者们,今天咱们来聊聊Java线程池提交任务的底层源码与源码解析。作为一个资深的Java开发者,我相信你一定对线程池并不陌生。线程池作为并发编程中的一大利器,其重要性不言而喻。今天,我将以对话的方式,带你一步步深入线程池的奥秘,从概述到功能点,再到背景和业务点,最后到底层原理和示例,让你对线程池有一个全新的认识。
50 12
|
19天前
|
存储 算法 Java
Java内存管理深度解析####
本文深入探讨了Java虚拟机(JVM)中的内存分配与垃圾回收机制,揭示了其高效管理内存的奥秘。文章首先概述了JVM内存模型,随后详细阐述了堆、栈、方法区等关键区域的作用及管理策略。在垃圾回收部分,重点介绍了标记-清除、复制算法、标记-整理等多种回收算法的工作原理及其适用场景,并通过实际案例分析了不同GC策略对应用性能的影响。对于开发者而言,理解这些原理有助于编写出更加高效、稳定的Java应用程序。 ####
|
19天前
|
存储 监控 算法
Java虚拟机(JVM)垃圾回收机制深度解析与优化策略####
本文旨在深入探讨Java虚拟机(JVM)的垃圾回收机制,揭示其工作原理、常见算法及参数调优方法。通过剖析垃圾回收的生命周期、内存区域划分以及GC日志分析,为开发者提供一套实用的JVM垃圾回收优化指南,助力提升Java应用的性能与稳定性。 ####
|
21天前
|
Java 数据库连接 开发者
Java中的异常处理机制:深入解析与最佳实践####
本文旨在为Java开发者提供一份关于异常处理机制的全面指南,从基础概念到高级技巧,涵盖try-catch结构、自定义异常、异常链分析以及最佳实践策略。不同于传统的摘要概述,本文将以一个实际项目案例为线索,逐步揭示如何高效地管理运行时错误,提升代码的健壮性和可维护性。通过对比常见误区与优化方案,读者将获得编写更加健壮Java应用程序的实用知识。 --- ####
|
24天前
|
数据采集 存储 Web App开发
Java爬虫:深入解析商品详情的利器
在数字化时代,信息处理能力成为企业竞争的关键。本文探讨如何利用Java编写高效、准确的商品详情爬虫,涵盖爬虫技术概述、Java爬虫优势、开发步骤、法律法规遵守及数据处理分析等内容,助力电商领域市场趋势把握与决策支持。
|
25天前
|
安全 Java
Java中WAIT和NOTIFY方法调用时机的深层解析
在Java多线程编程中,`wait()`和`notify()`方法的正确使用对于线程间的协调至关重要。这两个方法必须在同步块或同步方法中调用,这一规定的深层原因是什么呢?本文将深入探讨这一机制。
35 5
|
23天前
|
存储 缓存 监控
Java中的线程池深度解析####
本文深入探讨了Java并发编程中的核心组件——线程池,从其基本概念、工作原理、核心参数解析到应用场景与最佳实践,全方位剖析了线程池在提升应用性能、资源管理和任务调度方面的重要作用。通过实例演示和性能对比,揭示合理配置线程池对于构建高效Java应用的关键意义。 ####
|
7天前
|
安全 Java API
java如何请求接口然后终止某个线程
通过本文的介绍,您应该能够理解如何在Java中请求接口并根据返回结果终止某个线程。合理使用标志位或 `interrupt`方法可以确保线程的安全终止,而处理好网络请求中的各种异常情况,可以提高程序的稳定性和可靠性。
37 6

推荐镜像

更多
下一篇
DataWorks