CVPR2020 论文和代码合集

本文涉及的产品
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云解析 DNS,旗舰版 1个月
简介: CVPR2020 论文和代码合集

CVPR2020-Code

CVPR 2020 论文开源项目合集,同时欢迎各位大佬提交issue,分享CVPR 2020开源项目


【推荐阅读】


CVPR 2020 virtual


ECCV 2020 论文开源项目合集来了:https://github.com/amusi/ECCV2020-Code

关于往年CV顶会论文(如ECCV 2020、CVPR 2019、ICCV 2019)以及其他优质CV论文和大盘点,详见: https://github.com/amusi/daily-paper-computer-vision

【CVPR 2020 论文开源目录】

CNN

图像分类

视频分类

目标检测

3D目标检测

视频目标检测

目标跟踪

语义分割

实例分割

全景分割

视频目标分割

超像素分割

交互式图像分割

NAS

GAN

Re-ID

3D点云(分类/分割/配准/跟踪等)

人脸(识别/检测/重建等)

人体姿态估计(2D/3D)

人体解析

场景文本检测

场景文本识别

特征(点)检测和描述

超分辨率

模型压缩/剪枝

视频理解/行为识别

人群计数

深度估计

6D目标姿态估计

手势估计

显著性检测

去噪

去雨

去模糊

去雾

特征点检测与描述

视觉问答(VQA)

视频问答(VideoQA)

视觉语言导航

视频压缩

视频插帧

风格迁移

车道线检测

"人-物"交互(HOI)检测

轨迹预测

运动预测

光流估计

图像检索

虚拟试衣

HDR

对抗样本

三维重建

深度补全

语义场景补全

图像/视频描述

线框解析

数据集

其他

不确定中没中

CNN

Exploring Self-attention for Image Recognition

论文:https://hszhao.github.io/papers/cvpr20_san.pdf

代码:https://github.com/hszhao/SAN

Improving Convolutional Networks with Self-Calibrated Convolutions

主页:https://mmcheng.net/scconv/

论文:http://mftp.mmcheng.net/Papers/20cvprSCNet.pdf

代码:https://github.com/backseason/SCNet

Rethinking Depthwise Separable Convolutions: How Intra-Kernel Correlations Lead to Improved MobileNets

论文:https://arxiv.org/abs/2003.13549

代码:https://github.com/zeiss-microscopy/BSConv

图像分类

Interpretable and Accurate Fine-grained Recognition via Region Grouping

论文:https://arxiv.org/abs/2005.10411

代码:https://github.com/zxhuang1698/interpretability-by-parts

Compositional Convolutional Neural Networks: A Deep Architecture with Innate Robustness to Partial Occlusion

论文:https://arxiv.org/abs/2003.04490

代码:https://github.com/AdamKortylewski/CompositionalNets

Spatially Attentive Output Layer for Image Classification

论文:https://arxiv.org/abs/2004.07570

代码(好像被原作者删除了):https://github.com/ildoonet/spatially-attentive-output-layer

视频分类

SmallBigNet: Integrating Core and Contextual Views for Video Classification

论文:https://arxiv.org/abs/2006.14582

代码:https://github.com/xhl-video/SmallBigNet

目标检测

Overcoming Classifier Imbalance for Long-tail Object Detection with Balanced Group Softmax

论文:http://openaccess.thecvf.com/content_CVPR_2020/papers/Li_Overcoming_Classifier_Imbalance_for_Long-Tail_Object_Detection_With_Balanced_Group_CVPR_2020_paper.pdf

代码:https://github.com/FishYuLi/BalancedGroupSoftmax

AugFPN: Improving Multi-scale Feature Learning for Object Detection

论文:http://openaccess.thecvf.com/content_CVPR_2020/papers/Guo_AugFPN_Improving_Multi-Scale_Feature_Learning_for_Object_Detection_CVPR_2020_paper.pdf

代码:https://github.com/Gus-Guo/AugFPN

Noise-Aware Fully Webly Supervised Object Detection

论文:http://openaccess.thecvf.com/content_CVPR_2020/html/Shen_Noise-Aware_Fully_Webly_Supervised_Object_Detection_CVPR_2020_paper.html

代码:https://github.com/shenyunhang/NA-fWebSOD/

Learning a Unified Sample Weighting Network for Object Detection

论文:https://arxiv.org/abs/2006.06568

代码:https://github.com/caiqi/sample-weighting-network

D2Det: Towards High Quality Object Detection and Instance Segmentation

论文:http://openaccess.thecvf.com/content_CVPR_2020/papers/Cao_D2Det_Towards_High_Quality_Object_Detection_and_Instance_Segmentation_CVPR_2020_paper.pdf

代码:https://github.com/JialeCao001/D2Det

Dynamic Refinement Network for Oriented and Densely Packed Object Detection

论文下载链接:https://arxiv.org/abs/2005.09973

代码和数据集:https://github.com/Anymake/DRN_CVPR2020

Scale-Equalizing Pyramid Convolution for Object Detection

论文:https://arxiv.org/abs/2005.03101

代码:https://github.com/jshilong/SEPC

Revisiting the Sibling Head in Object Detector

论文:https://arxiv.org/abs/2003.07540

代码:https://github.com/Sense-X/TSD

Scale-equalizing Pyramid Convolution for Object Detection

论文:暂无

代码:https://github.com/jshilong/SEPC

Detection in Crowded Scenes: One Proposal, Multiple Predictions

论文:https://arxiv.org/abs/2003.09163

代码:https://github.com/megvii-model/CrowdDetection

Instance-aware, Context-focused, and Memory-efficient Weakly Supervised Object Detection

论文:https://arxiv.org/abs/2004.04725

代码:https://github.com/NVlabs/wetectron

Bridging the Gap Between Anchor-based and Anchor-free Detection via Adaptive Training Sample Selection

论文:https://arxiv.org/abs/1912.02424

代码:https://github.com/sfzhang15/ATSS

BiDet: An Efficient Binarized Object Detector

论文:https://arxiv.org/abs/2003.03961

代码:https://github.com/ZiweiWangTHU/BiDet

Harmonizing Transferability and Discriminability for Adapting Object Detectors

论文:https://arxiv.org/abs/2003.06297

代码:https://github.com/chaoqichen/HTCN

CentripetalNet: Pursuing High-quality Keypoint Pairs for Object Detection

论文:https://arxiv.org/abs/2003.09119

代码:https://github.com/KiveeDong/CentripetalNet

Hit-Detector: Hierarchical Trinity Architecture Search for Object Detection

论文:https://arxiv.org/abs/2003.11818

代码:https://github.com/ggjy/HitDet.pytorch

EfficientDet: Scalable and Efficient Object Detection

论文:https://arxiv.org/abs/1911.09070

代码:https://github.com/google/automl/tree/master/efficientdet

3D目标检测

SESS: Self-Ensembling Semi-Supervised 3D Object Detection

论文: https://arxiv.org/abs/1912.11803

代码:https://github.com/Na-Z/sess

Associate-3Ddet: Perceptual-to-Conceptual Association for 3D Point Cloud Object Detection

论文: https://arxiv.org/abs/2006.04356

代码:https://github.com/dleam/Associate-3Ddet

What You See is What You Get: Exploiting Visibility for 3D Object Detection

主页:https://www.cs.cmu.edu/~peiyunh/wysiwyg/

论文:https://arxiv.org/abs/1912.04986

代码:https://github.com/peiyunh/wysiwyg

Learning Depth-Guided Convolutions for Monocular 3D Object Detection

论文:https://arxiv.org/abs/1912.04799

代码:https://github.com/dingmyu/D4LCN

Structure Aware Single-stage 3D Object Detection from Point Cloud

论文:http://openaccess.thecvf.com/content_CVPR_2020/html/He_Structure_Aware_Single-Stage_3D_Object_Detection_From_Point_Cloud_CVPR_2020_paper.html

代码:https://github.com/skyhehe123/SA-SSD

IDA-3D: Instance-Depth-Aware 3D Object Detection from Stereo Vision for Autonomous Driving

论文:http://openaccess.thecvf.com/content_CVPR_2020/papers/Peng_IDA-3D_Instance-Depth-Aware_3D_Object_Detection_From_Stereo_Vision_for_Autonomous_CVPR_2020_paper.pdf

代码:https://github.com/swords123/IDA-3D

Train in Germany, Test in The USA: Making 3D Object Detectors Generalize

论文:https://arxiv.org/abs/2005.08139

代码:https://github.com/cxy1997/3D_adapt_auto_driving

MLCVNet: Multi-Level Context VoteNet for 3D Object Detection

论文:https://arxiv.org/abs/2004.05679

代码:https://github.com/NUAAXQ/MLCVNet

3DSSD: Point-based 3D Single Stage Object Detector

CVPR 2020 Oral

论文:https://arxiv.org/abs/2002.10187

代码:https://github.com/tomztyang/3DSSD

Disp R-CNN: Stereo 3D Object Detection via Shape Prior Guided Instance Disparity Estimation

论文:https://arxiv.org/abs/2004.03572

代码:https://github.com/zju3dv/disprcn

End-to-End Pseudo-LiDAR for Image-Based 3D Object Detection

论文:https://arxiv.org/abs/2004.03080

代码:https://github.com/mileyan/pseudo-LiDAR_e2e

DSGN: Deep Stereo Geometry Network for 3D Object Detection

论文:https://arxiv.org/abs/2001.03398

代码:https://github.com/chenyilun95/DSGN

LiDAR-based Online 3D Video Object Detection with Graph-based Message Passing and Spatiotemporal Transformer Attention

论文:https://arxiv.org/abs/2004.01389

代码:https://github.com/yinjunbo/3DVID

PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection

论文:https://arxiv.org/abs/1912.13192

代码:https://github.com/sshaoshuai/PV-RCNN

Point-GNN: Graph Neural Network for 3D Object Detection in a Point Cloud

论文:https://arxiv.org/abs/2003.01251

代码:https://github.com/WeijingShi/Point-GNN

视频目标检测

Memory Enhanced Global-Local Aggregation for Video Object Detection

论文:https://arxiv.org/abs/2003.12063

代码:https://github.com/Scalsol/mega.pytorch

目标跟踪

SiamCAR: Siamese Fully Convolutional Classification and Regression for Visual Tracking

论文:https://arxiv.org/abs/1911.07241

代码:https://github.com/ohhhyeahhh/SiamCAR

D3S – A Discriminative Single Shot Segmentation Tracker

论文:https://arxiv.org/abs/1911.08862

代码:https://github.com/alanlukezic/d3s

ROAM: Recurrently Optimizing Tracking Model

论文:https://arxiv.org/abs/1907.12006

代码:https://github.com/skyoung/ROAM

Siam R-CNN: Visual Tracking by Re-Detection

主页:https://www.vision.rwth-aachen.de/page/siamrcnn

论文:https://arxiv.org/abs/1911.12836

论文2:https://www.vision.rwth-aachen.de/media/papers/192/siamrcnn.pdf

代码:https://github.com/VisualComputingInstitute/SiamR-CNN

Cooling-Shrinking Attack: Blinding the Tracker with Imperceptible Noises

论文:https://arxiv.org/abs/2003.09595

代码:https://github.com/MasterBin-IIAU/CSA

High-Performance Long-Term Tracking with Meta-Updater

论文:https://arxiv.org/abs/2004.00305

代码:https://github.com/Daikenan/LTMU

AutoTrack: Towards High-Performance Visual Tracking for UAV with Automatic Spatio-Temporal Regularization

论文:https://arxiv.org/abs/2003.12949

代码:https://github.com/vision4robotics/AutoTrack

Probabilistic Regression for Visual Tracking

论文:https://arxiv.org/abs/2003.12565

代码:https://github.com/visionml/pytracking

MAST: A Memory-Augmented Self-supervised Tracker

论文:https://arxiv.org/abs/2002.07793

代码:https://github.com/zlai0/MAST

Siamese Box Adaptive Network for Visual Tracking

论文:https://arxiv.org/abs/2003.06761

代码:https://github.com/hqucv/siamban

多目标跟踪

3D-ZeF: A 3D Zebrafish Tracking Benchmark Dataset

主页:https://vap.aau.dk/3d-zef/

论文:https://arxiv.org/abs/2006.08466

代码:https://bitbucket.org/aauvap/3d-zef/src/master/

数据集:https://motchallenge.net/data/3D-ZeF20

语义分割

FDA: Fourier Domain Adaptation for Semantic Segmentation

论文:https://arxiv.org/abs/2004.05498

代码:https://github.com/YanchaoYang/FDA

Super-BPD: Super Boundary-to-Pixel Direction for Fast Image Segmentation

论文:暂无

代码:https://github.com/JianqiangWan/Super-BPD

Single-Stage Semantic Segmentation from Image Labels

论文:https://arxiv.org/abs/2005.08104

代码:https://github.com/visinf/1-stage-wseg

Learning Texture Invariant Representation for Domain Adaptation of Semantic Segmentation

论文:https://arxiv.org/abs/2003.00867

代码:https://github.com/MyeongJin-Kim/Learning-Texture-Invariant-Representation

MSeg: A Composite Dataset for Multi-domain Semantic Segmentation

论文:http://vladlen.info/papers/MSeg.pdf

代码:https://github.com/mseg-dataset/mseg-api

CascadePSP: Toward Class-Agnostic and Very High-Resolution Segmentation via Global and Local Refinement

论文:https://arxiv.org/abs/2005.02551

代码:https://github.com/hkchengrex/CascadePSP

Unsupervised Intra-domain Adaptation for Semantic Segmentation through Self-Supervision

Oral

论文:https://arxiv.org/abs/2004.07703

代码:https://github.com/feipan664/IntraDA

Self-supervised Equivariant Attention Mechanism for Weakly Supervised Semantic Segmentation

论文:https://arxiv.org/abs/2004.04581

代码:https://github.com/YudeWang/SEAM

Temporally Distributed Networks for Fast Video Segmentation

论文:https://arxiv.org/abs/2004.01800

代码:https://github.com/feinanshan/TDNet

Context Prior for Scene Segmentation

论文:https://arxiv.org/abs/2004.01547

代码:https://git.io/ContextPrior

Strip Pooling: Rethinking Spatial Pooling for Scene Parsing

论文:https://arxiv.org/abs/2003.13328

代码:https://github.com/Andrew-Qibin/SPNet

Cars Can’t Fly up in the Sky: Improving Urban-Scene Segmentation via Height-driven Attention Networks

论文:https://arxiv.org/abs/2003.05128

代码:https://github.com/shachoi/HANet

Learning Dynamic Routing for Semantic Segmentation

论文:https://arxiv.org/abs/2003.10401

代码:https://github.com/yanwei-li/DynamicRouting

实例分割

D2Det: Towards High Quality Object Detection and Instance Segmentation

论文:http://openaccess.thecvf.com/content_CVPR_2020/papers/Cao_D2Det_Towards_High_Quality_Object_Detection_and_Instance_Segmentation_CVPR_2020_paper.pdf

代码:https://github.com/JialeCao001/D2Det

PolarMask: Single Shot Instance Segmentation with Polar Representation

论文:https://arxiv.org/abs/1909.13226

代码:https://github.com/xieenze/PolarMask

解读:https://zhuanlan.zhihu.com/p/84890413

CenterMask : Real-Time Anchor-Free Instance Segmentation

论文:https://arxiv.org/abs/1911.06667

代码:https://github.com/youngwanLEE/CenterMask

BlendMask: Top-Down Meets Bottom-Up for Instance Segmentation

论文:https://arxiv.org/abs/2001.00309

代码:https://github.com/aim-uofa/AdelaiDet

Deep Snake for Real-Time Instance Segmentation

论文:https://arxiv.org/abs/2001.01629

代码:https://github.com/zju3dv/snake

Mask Encoding for Single Shot Instance Segmentation

论文:https://arxiv.org/abs/2003.11712

代码:https://github.com/aim-uofa/AdelaiDet

全景分割

Video Panoptic Segmentation

论文:https://arxiv.org/abs/2006.11339

代码:https://github.com/mcahny/vps

数据集:https://www.dropbox.com/s/ecem4kq0fdkver4/cityscapes-vps-dataset-1.0.zip?dl=0

Pixel Consensus Voting for Panoptic Segmentation

论文:https://arxiv.org/abs/2004.01849

代码:还未公布

BANet: Bidirectional Aggregation Network with Occlusion Handling for Panoptic Segmentation

论文:https://arxiv.org/abs/2003.14031

代码:https://github.com/Mooonside/BANet

视频目标分割

A Transductive Approach for Video Object Segmentation

论文:https://arxiv.org/abs/2004.07193

代码:https://github.com/microsoft/transductive-vos.pytorch

State-Aware Tracker for Real-Time Video Object Segmentation

论文:https://arxiv.org/abs/2003.00482

代码:https://github.com/MegviiDetection/video_analyst

Learning Fast and Robust Target Models for Video Object Segmentation

论文:https://arxiv.org/abs/2003.00908

代码:https://github.com/andr345/frtm-vos

Learning Video Object Segmentation from Unlabeled Videos

论文:https://arxiv.org/abs/2003.05020

代码:https://github.com/carrierlxk/MuG

超像素分割

Superpixel Segmentation with Fully Convolutional Networks

论文:https://arxiv.org/abs/2003.12929

代码:https://github.com/fuy34/superpixel_fcn

交互式图像分割

Interactive Object Segmentation with Inside-Outside Guidance

论文下载链接:http://openaccess.thecvf.com/content_CVPR_2020/papers/Zhang_Interactive_Object_Segmentation_With_Inside-Outside_Guidance_CVPR_2020_paper.pdf

代码:https://github.com/shiyinzhang/Inside-Outside-Guidance

数据集:https://github.com/shiyinzhang/Pixel-ImageNet

NAS

AOWS: Adaptive and optimal network width search with latency constraints

论文:https://arxiv.org/abs/2005.10481

代码:https://github.com/bermanmaxim/AOWS

Densely Connected Search Space for More Flexible Neural Architecture Search

论文:https://arxiv.org/abs/1906.09607

代码:https://github.com/JaminFong/DenseNAS

MTL-NAS: Task-Agnostic Neural Architecture Search towards General-Purpose Multi-Task Learning

论文:https://arxiv.org/abs/2003.14058

代码:https://github.com/bhpfelix/MTLNAS

FBNetV2: Differentiable Neural Architecture Search for Spatial and Channel Dimensions

论文下载链接:https://arxiv.org/abs/2004.05565

代码:https://github.com/facebookresearch/mobile-vision

Neural Architecture Search for Lightweight Non-Local Networks

论文:https://arxiv.org/abs/2004.01961

代码:https://github.com/LiYingwei/AutoNL

Rethinking Performance Estimation in Neural Architecture Search

论文:https://arxiv.org/abs/2005.09917

代码:https://github.com/zhengxiawu/rethinking_performance_estimation_in_NAS

解读1:https://www.zhihu.com/question/372070853/answer/1035234510

解读2:https://zhuanlan.zhihu.com/p/111167409

CARS: Continuous Evolution for Efficient Neural Architecture Search

论文:https://arxiv.org/abs/1909.04977

代码(即将开源):https://github.com/huawei-noah/CARS

GAN

SEAN: Image Synthesis with Semantic Region-Adaptive Normalization

论文:https://arxiv.org/abs/1911.12861

代码:https://github.com/ZPdesu/SEAN

Reusing Discriminators for Encoding: Towards Unsupervised Image-to-Image Translation

论文地址:http://openaccess.thecvf.com/content_CVPR_2020/html/Chen_Reusing_Discriminators_for_Encoding_Towards_Unsupervised_Image-to-Image_Translation_CVPR_2020_paper.html

代码地址:https://github.com/alpc91/NICE-GAN-pytorch

Distribution-induced Bidirectional Generative Adversarial Network for Graph Representation Learning

论文:https://arxiv.org/abs/1912.01899

代码:https://github.com/SsGood/DBGAN

PSGAN: Pose and Expression Robust Spatial-Aware GAN for Customizable Makeup Transfer

论文:https://arxiv.org/abs/1909.06956

代码:https://github.com/wtjiang98/PSGAN

Semantically Mutil-modal Image Synthesis

主页:http://seanseattle.github.io/SMIS

论文:https://arxiv.org/abs/2003.12697

代码:https://github.com/Seanseattle/SMIS

Unpaired Portrait Drawing Generation via Asymmetric Cycle Mapping

论文:https://yiranran.github.io/files/CVPR2020_Unpaired%20Portrait%20Drawing%20Generation%20via%20Asymmetric%20Cycle%20Mapping.pdf

代码:https://github.com/yiranran/Unpaired-Portrait-Drawing

Learning to Cartoonize Using White-box Cartoon Representations

论文:https://github.com/SystemErrorWang/White-box-Cartoonization/blob/master/paper/06791.pdf

主页:https://systemerrorwang.github.io/White-box-Cartoonization/

代码:https://github.com/SystemErrorWang/White-box-Cartoonization

解读:https://zhuanlan.zhihu.com/p/117422157

Demo视频:https://www.bilibili.com/video/av56708333

GAN Compression: Efficient Architectures for Interactive Conditional GANs

论文:https://arxiv.org/abs/2003.08936

代码:https://github.com/mit-han-lab/gan-compression

Watch your Up-Convolution: CNN Based Generative Deep Neural Networks are Failing to Reproduce Spectral Distributions

论文:https://arxiv.org/abs/2003.01826

代码:https://github.com/cc-hpc-itwm/UpConv

Re-ID

High-Order Information Matters: Learning Relation and Topology for Occluded Person Re-Identification

论文:http://openaccess.thecvf.com/content_CVPR_2020/html/Wang_High-Order_Information_Matters_Learning_Relation_and_Topology_for_Occluded_Person_CVPR_2020_paper.html

代码:https://github.com/wangguanan/HOReID

COCAS: A Large-Scale Clothes Changing Person Dataset for Re-identification

论文:https://arxiv.org/abs/2005.07862

数据集:暂无

Transferable, Controllable, and Inconspicuous Adversarial Attacks on Person Re-identification With Deep Mis-Ranking

论文:https://arxiv.org/abs/2004.04199

代码:https://github.com/whj363636/Adversarial-attack-on-Person-ReID-With-Deep-Mis-Ranking

Pose-guided Visible Part Matching for Occluded Person ReID

论文:https://arxiv.org/abs/2004.00230

代码:https://github.com/hh23333/PVPM

Weakly supervised discriminative feature learning with state information for person identification

论文:https://arxiv.org/abs/2002.11939

代码:https://github.com/KovenYu/state-information

3D点云(分类/分割/配准等)

3D点云卷积

PointASNL: Robust Point Clouds Processing using Nonlocal Neural Networks with Adaptive Sampling

论文:https://arxiv.org/abs/2003.00492

代码:https://github.com/yanx27/PointASNL

Global-Local Bidirectional Reasoning for Unsupervised Representation Learning of 3D Point Clouds

论文下载链接:https://arxiv.org/abs/2003.12971

代码:https://github.com/raoyongming/PointGLR

Grid-GCN for Fast and Scalable Point Cloud Learning

论文:https://arxiv.org/abs/1912.02984

代码:https://github.com/Xharlie/Grid-GCN

FPConv: Learning Local Flattening for Point Convolution

论文:https://arxiv.org/abs/2002.10701

代码:https://github.com/lyqun/FPConv

3D点云分类

PointAugment: an Auto-Augmentation Framework for Point Cloud Classification

论文:https://arxiv.org/abs/2002.10876

代码(即将开源): https://github.com/liruihui/PointAugment/

3D点云语义分割

RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds

论文:https://arxiv.org/abs/1911.11236

代码:https://github.com/QingyongHu/RandLA-Net

解读:https://zhuanlan.zhihu.com/p/105433460

Weakly Supervised Semantic Point Cloud Segmentation:Towards 10X Fewer Labels

论文:https://arxiv.org/abs/2004.04091

代码:https://github.com/alex-xun-xu/WeakSupPointCloudSeg

PolarNet: An Improved Grid Representation for Online LiDAR Point Clouds Semantic Segmentation

论文:https://arxiv.org/abs/2003.14032

代码:https://github.com/edwardzhou130/PolarSeg

Learning to Segment 3D Point Clouds in 2D Image Space

论文:https://arxiv.org/abs/2003.05593

代码:https://github.com/WPI-VISLab/Learning-to-Segment-3D-Point-Clouds-in-2D-Image-Space

3D点云实例分割

PointGroup: Dual-Set Point Grouping for 3D Instance Segmentation

论文:https://arxiv.org/abs/2004.01658

代码:https://github.com/Jia-Research-Lab/PointGroup

3D点云配准

Feature-metric Registration: A Fast Semi-supervised Approach for Robust Point Cloud Registration without Correspondences

论文:https://arxiv.org/abs/2005.01014

代码:https://github.com/XiaoshuiHuang/fmr

D3Feat: Joint Learning of Dense Detection and Description of 3D Local Features

论文:https://arxiv.org/abs/2003.03164

代码:https://github.com/XuyangBai/D3Feat

RPM-Net: Robust Point Matching using Learned Features

论文:https://arxiv.org/abs/2003.13479

代码:https://github.com/yewzijian/RPMNet

3D点云补全

Cascaded Refinement Network for Point Cloud Completion

论文:https://arxiv.org/abs/2004.03327

代码:https://github.com/xiaogangw/cascaded-point-completion

3D点云目标跟踪

P2B: Point-to-Box Network for 3D Object Tracking in Point Clouds

论文:https://arxiv.org/abs/2005.13888

代码:https://github.com/HaozheQi/P2B

其他

An Efficient PointLSTM for Point Clouds Based Gesture Recognition

论文:http://openaccess.thecvf.com/content_CVPR_2020/html/Min_An_Efficient_PointLSTM_for_Point_Clouds_Based_Gesture_Recognition_CVPR_2020_paper.html

代码:https://github.com/Blueprintf/pointlstm-gesture-recognition-pytorch

人脸

人脸识别

CurricularFace: Adaptive Curriculum Learning Loss for Deep Face Recognition

论文:https://arxiv.org/abs/2004.00288

代码:https://github.com/HuangYG123/CurricularFace

Learning Meta Face Recognition in Unseen Domains

论文:https://arxiv.org/abs/2003.07733

代码:https://github.com/cleardusk/MFR

解读:https://mp.weixin.qq.com/s/YZoEnjpnlvb90qSI3xdJqQ

人脸检测

人脸活体检测

Searching Central Difference Convolutional Networks for Face Anti-Spoofing

论文:https://arxiv.org/abs/2003.04092

代码:https://github.com/ZitongYu/CDCN

人脸表情识别

Suppressing Uncertainties for Large-Scale Facial Expression Recognition

论文:https://arxiv.org/abs/2002.10392

代码(即将开源):https://github.com/kaiwang960112/Self-Cure-Network

人脸转正

Rotate-and-Render: Unsupervised Photorealistic Face Rotation from Single-View Images

论文:https://arxiv.org/abs/2003.08124

代码:https://github.com/Hangz-nju-cuhk/Rotate-and-Render

人脸3D重建

AvatarMe: Realistically Renderable 3D Facial Reconstruction "in-the-wild"

论文:https://arxiv.org/abs/2003.13845

数据集:https://github.com/lattas/AvatarMe

FaceScape: a Large-scale High Quality 3D Face Dataset and Detailed Riggable 3D Face Prediction

论文:https://arxiv.org/abs/2003.13989

代码:https://github.com/zhuhao-nju/facescape

人体姿态估计(2D/3D)

2D人体姿态估计

TransMoMo: Invariance-Driven Unsupervised Video Motion Retargeting

主页:https://yzhq97.github.io/transmomo/

论文:https://arxiv.org/abs/2003.14401

代码:https://github.com/yzhq97/transmomo.pytorch

HigherHRNet: Scale-Aware Representation Learning for Bottom-Up Human Pose Estimation

论文:https://arxiv.org/abs/1908.10357

代码:https://github.com/HRNet/HigherHRNet-Human-Pose-Estimation

The Devil is in the Details: Delving into Unbiased Data Processing for Human Pose Estimation

论文:https://arxiv.org/abs/1911.07524

代码:https://github.com/HuangJunJie2017/UDP-Pose

解读:https://zhuanlan.zhihu.com/p/92525039

Distribution-Aware Coordinate Representation for Human Pose Estimation

主页:https://ilovepose.github.io/coco/

论文:https://arxiv.org/abs/1910.06278

代码:https://github.com/ilovepose/DarkPose

3D人体姿态估计

Cascaded Deep Monocular 3D Human Pose Estimation With Evolutionary Training Data

论文:https://arxiv.org/abs/2006.07778

代码:https://github.com/Nicholasli1995/EvoSkeleton

Fusing Wearable IMUs with Multi-View Images for Human Pose Estimation: A Geometric Approach

主页:https://www.zhe-zhang.com/cvpr2020

论文:https://arxiv.org/abs/2003.11163

代码:https://github.com/CHUNYUWANG/imu-human-pose-pytorch

Bodies at Rest: 3D Human Pose and Shape Estimation from a Pressure Image using Synthetic Data

论文下载链接:https://arxiv.org/abs/2004.01166

代码:https://github.com/Healthcare-Robotics/bodies-at-rest

数据集:https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/KOA4ML

Self-Supervised 3D Human Pose Estimation via Part Guided Novel Image Synthesis

主页:http://val.cds.iisc.ac.in/pgp-human/

论文:https://arxiv.org/abs/2004.04400

Compressed Volumetric Heatmaps for Multi-Person 3D Pose Estimation

论文:https://arxiv.org/abs/2004.00329

代码:https://github.com/fabbrimatteo/LoCO

VIBE: Video Inference for Human Body Pose and Shape Estimation

论文:https://arxiv.org/abs/1912.05656

代码:https://github.com/mkocabas/VIBE

Back to the Future: Joint Aware Temporal Deep Learning 3D Human Pose Estimation

论文:https://arxiv.org/abs/2002.11251

代码:https://github.com/vnmr/JointVideoPose3D

Cross-View Tracking for Multi-Human 3D Pose Estimation at over 100 FPS

论文:https://arxiv.org/abs/2003.03972

数据集:暂无

人体解析

Correlating Edge, Pose with Parsing

论文:https://arxiv.org/abs/2005.01431

代码:https://github.com/ziwei-zh/CorrPM

场景文本检测

STEFANN: Scene Text Editor using Font Adaptive Neural Network

主页:https://prasunroy.github.io/stefann/

论文:http://openaccess.thecvf.com/content_CVPR_2020/html/Roy_STEFANN_Scene_Text_Editor_Using_Font_Adaptive_Neural_Network_CVPR_2020_paper.html

代码:https://github.com/prasunroy/stefann

数据集:https://drive.google.com/open?id=1sEDiX_jORh2X-HSzUnjIyZr-G9LJIw1k

ContourNet: Taking a Further Step Toward Accurate Arbitrary-Shaped Scene Text Detection

论文:http://openaccess.thecvf.com/content_CVPR_2020/papers/Wang_ContourNet_Taking_a_Further_Step_Toward_Accurate_Arbitrary-Shaped_Scene_Text_CVPR_2020_paper.pdf

代码:https://github.com/wangyuxin87/ContourNet

UnrealText: Synthesizing Realistic Scene Text Images from the Unreal World

论文:https://arxiv.org/abs/2003.10608

代码和数据集:https://github.com/Jyouhou/UnrealText/

ABCNet: Real-time Scene Text Spotting with Adaptive Bezier-Curve Network

论文:https://arxiv.org/abs/2002.10200

代码(即将开源):https://github.com/Yuliang-Liu/bezier_curve_text_spotting

代码(即将开源):https://github.com/aim-uofa/adet

Deep Relational Reasoning Graph Network for Arbitrary Shape Text Detection

论文:https://arxiv.org/abs/2003.07493

代码:https://github.com/GXYM/DRRG

场景文本识别

SEED: Semantics Enhanced Encoder-Decoder Framework for Scene Text Recognition

论文:https://arxiv.org/abs/2005.10977

代码:https://github.com/Pay20Y/SEED

UnrealText: Synthesizing Realistic Scene Text Images from the Unreal World

论文:https://arxiv.org/abs/2003.10608

代码和数据集:https://github.com/Jyouhou/UnrealText/

ABCNet: Real-time Scene Text Spotting with Adaptive Bezier-Curve Network

论文:https://arxiv.org/abs/2002.10200

代码(即将开源):https://github.com/aim-uofa/adet

Learn to Augment: Joint Data Augmentation and Network Optimization for Text Recognition

论文:https://arxiv.org/abs/2003.06606

代码:https://github.com/Canjie-Luo/Text-Image-Augmentation

特征(点)检测和描述

SuperGlue: Learning Feature Matching with Graph Neural Networks

论文:https://arxiv.org/abs/1911.11763

代码:https://github.com/magicleap/SuperGluePretrainedNetwork

超分辨率

图像超分辨率

Closed-Loop Matters: Dual Regression Networks for Single Image Super-Resolution

论文:http://openaccess.thecvf.com/content_CVPR_2020/html/Guo_Closed-Loop_Matters_Dual_Regression_Networks_for_Single_Image_Super-Resolution_CVPR_2020_paper.html

代码:https://github.com/guoyongcs/DRN

Learning Texture Transformer Network for Image Super-Resolution

论文:https://arxiv.org/abs/2006.04139

代码:https://github.com/FuzhiYang/TTSR

Image Super-Resolution with Cross-Scale Non-Local Attention and Exhaustive Self-Exemplars Mining

论文:https://arxiv.org/abs/2006.01424

代码:https://github.com/SHI-Labs/Cross-Scale-Non-Local-Attention

Structure-Preserving Super Resolution with Gradient Guidance

论文:https://arxiv.org/abs/2003.13081

代码:https://github.com/Maclory/SPSR

Rethinking Data Augmentation for Image Super-resolution: A Comprehensive Analysis and a New Strategy

论文:https://arxiv.org/abs/2004.00448

代码:https://github.com/clovaai/cutblur

视频超分辨率

TDAN: Temporally-Deformable Alignment Network for Video Super-Resolution

论文:https://arxiv.org/abs/1812.02898

代码:https://github.com/YapengTian/TDAN-VSR-CVPR-2020

Space-Time-Aware Multi-Resolution Video Enhancement

主页:https://alterzero.github.io/projects/STAR.html

论文:http://arxiv.org/abs/2003.13170

代码:https://github.com/alterzero/STARnet

Zooming Slow-Mo: Fast and Accurate One-Stage Space-Time Video Super-Resolution

论文:https://arxiv.org/abs/2002.11616

代码:https://github.com/Mukosame/Zooming-Slow-Mo-CVPR-2020

模型压缩/剪枝

DMCP: Differentiable Markov Channel Pruning for Neural Networks

论文:https://arxiv.org/abs/2005.03354

代码:https://github.com/zx55/dmcp

Forward and Backward Information Retention for Accurate Binary Neural Networks

论文:https://arxiv.org/abs/1909.10788

代码:https://github.com/htqin/IR-Net

Towards Efficient Model Compression via Learned Global Ranking

论文:https://arxiv.org/abs/1904.12368

代码:https://github.com/cmu-enyac/LeGR

HRank: Filter Pruning using High-Rank Feature Map

论文:http://arxiv.org/abs/2002.10179

代码:https://github.com/lmbxmu/HRank

GAN Compression: Efficient Architectures for Interactive Conditional GANs

论文:https://arxiv.org/abs/2003.08936

代码:https://github.com/mit-han-lab/gan-compression

Group Sparsity: The Hinge Between Filter Pruning and Decomposition for Network Compression

论文:https://arxiv.org/abs/2003.08935

代码:https://github.com/ofsoundof/group_sparsity

视频理解/行为识别

Oops! Predicting Unintentional Action in Video

主页:https://oops.cs.columbia.edu/

论文:https://arxiv.org/abs/1911.11206

代码:https://github.com/cvlab-columbia/oops

数据集:https://oops.cs.columbia.edu/data

PREDICT & CLUSTER: Unsupervised Skeleton Based Action Recognition

论文:https://arxiv.org/abs/1911.12409

代码:https://github.com/shlizee/Predict-Cluster

Intra- and Inter-Action Understanding via Temporal Action Parsing

论文:https://arxiv.org/abs/2005.10229

主页和数据集:https://sdolivia.github.io/TAPOS/

3DV: 3D Dynamic Voxel for Action Recognition in Depth Video

论文:https://arxiv.org/abs/2005.05501

代码:https://github.com/3huo/3DV-Action

FineGym: A Hierarchical Video Dataset for Fine-grained Action Understanding

主页:https://sdolivia.github.io/FineGym/

论文:https://arxiv.org/abs/2004.06704

TEA: Temporal Excitation and Aggregation for Action Recognition

论文:https://arxiv.org/abs/2004.01398

代码:https://github.com/Phoenix1327/tea-action-recognition

X3D: Expanding Architectures for Efficient Video Recognition

论文:https://arxiv.org/abs/2004.04730

代码:https://github.com/facebookresearch/SlowFast

Temporal Pyramid Network for Action Recognition

主页:https://decisionforce.github.io/TPN

论文:https://arxiv.org/abs/2004.03548

代码:https://github.com/decisionforce/TPN

基于骨架的动作识别

Disentangling and Unifying Graph Convolutions for Skeleton-Based Action Recognition

论文:https://arxiv.org/abs/2003.14111

代码:https://github.com/kenziyuliu/ms-g3d

人群计数

深度估计

BiFuse: Monocular 360◦ Depth Estimation via Bi-Projection Fusion

论文:http://openaccess.thecvf.com/content_CVPR_2020/papers/Wang_BiFuse_Monocular_360_Depth_Estimation_via_Bi-Projection_Fusion_CVPR_2020_paper.pdf

代码:https://github.com/Yeh-yu-hsuan/BiFuse

Focus on defocus: bridging the synthetic to real domain gap for depth estimation

论文:https://arxiv.org/abs/2005.09623

代码:https://github.com/dvl-tum/defocus-net

Bi3D: Stereo Depth Estimation via Binary Classifications

论文:https://arxiv.org/abs/2005.07274

代码:https://github.com/NVlabs/Bi3D

AANet: Adaptive Aggregation Network for Efficient Stereo Matching

论文:https://arxiv.org/abs/2004.09548

代码:https://github.com/haofeixu/aanet

Towards Better Generalization: Joint Depth-Pose Learning without PoseNet

论文:https://github.com/B1ueber2y/TrianFlow

代码:https://github.com/B1ueber2y/TrianFlow

单目深度估计

On the uncertainty of self-supervised monocular depth estimation

论文:https://arxiv.org/abs/2005.06209

代码:https://github.com/mattpoggi/mono-uncertainty

3D Packing for Self-Supervised Monocular Depth Estimation

论文:https://arxiv.org/abs/1905.02693

代码:https://github.com/TRI-ML/packnet-sfm

Demo视频:https://www.bilibili.com/video/av70562892/

Domain Decluttering: Simplifying Images to Mitigate Synthetic-Real Domain Shift and Improve Depth Estimation

论文:https://arxiv.org/abs/2002.12114

代码:https://github.com/yzhao520/ARC

6D目标姿态估计

PVN3D: A Deep Point-wise 3D Keypoints Voting Network for 6DoF Pose Estimation

论文:http://openaccess.thecvf.com/content_CVPR_2020/papers/He_PVN3D_A_Deep_Point-Wise_3D_Keypoints_Voting_Network_for_6DoF_CVPR_2020_paper.pdf

代码:https://github.com/ethnhe/PVN3D

MoreFusion: Multi-object Reasoning for 6D Pose Estimation from Volumetric Fusion

论文:https://arxiv.org/abs/2004.04336

代码:https://github.com/wkentaro/morefusion

EPOS: Estimating 6D Pose of Objects with Symmetries

主页:http://cmp.felk.cvut.cz/epos

论文:https://arxiv.org/abs/2004.00605

G2L-Net: Global to Local Network for Real-time 6D Pose Estimation with Embedding Vector Features

论文:https://arxiv.org/abs/2003.11089

代码:https://github.com/DC1991/G2L_Net

手势估计

HOPE-Net: A Graph-based Model for Hand-Object Pose Estimation

论文:https://arxiv.org/abs/2004.00060

主页:http://vision.sice.indiana.edu/projects/hopenet

Monocular Real-time Hand Shape and Motion Capture using Multi-modal Data

论文:https://arxiv.org/abs/2003.09572

代码:https://github.com/CalciferZh/minimal-hand

显著性检测

JL-DCF: Joint Learning and Densely-Cooperative Fusion Framework for RGB-D Salient Object Detection

论文:https://arxiv.org/abs/2004.08515

代码:https://github.com/kerenfu/JLDCF/

UC-Net: Uncertainty Inspired RGB-D Saliency Detection via Conditional Variational Autoencoders

主页:http://dpfan.net/d3netbenchmark/

论文:https://arxiv.org/abs/2004.05763

代码:https://github.com/JingZhang617/UCNet

去噪

A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising

论文:https://arxiv.org/abs/2003.12751

代码:https://github.com/Vandermode/NoiseModel

CycleISP: Real Image Restoration via Improved Data Synthesis

论文:https://arxiv.org/abs/2003.07761

代码:https://github.com/swz30/CycleISP

去雨

Multi-Scale Progressive Fusion Network for Single Image Deraining

论文:https://arxiv.org/abs/2003.10985

代码:https://github.com/kuihua/MSPFN

Detail-recovery Image Deraining via Context Aggregation Networks

论文:https://openaccess.thecvf.com/content_CVPR_2020/html/Deng_Detail-recovery_Image_Deraining_via_Context_Aggregation_Networks_CVPR_2020_paper.html

代码:https://github.com/Dengsgithub/DRD-Net

去模糊

视频去模糊

Cascaded Deep Video Deblurring Using Temporal Sharpness Prior

主页:https://csbhr.github.io/projects/cdvd-tsp/index.html

论文:https://arxiv.org/abs/2004.02501

代码:https://github.com/csbhr/CDVD-TSP

去雾

Domain Adaptation for Image Dehazing

论文:https://arxiv.org/abs/2005.04668

代码:https://github.com/HUSTSYJ/DA_dahazing

Multi-Scale Boosted Dehazing Network with Dense Feature Fusion

论文:https://arxiv.org/abs/2004.13388

代码:https://github.com/BookerDeWitt/MSBDN-DFF

特征点检测与描述

ASLFeat: Learning Local Features of Accurate Shape and Localization

论文:https://arxiv.org/abs/2003.10071

代码:https://github.com/lzx551402/aslfeat

视觉问答(VQA)

VC R-CNN:Visual Commonsense R-CNN

论文:https://arxiv.org/abs/2002.12204

代码:https://github.com/Wangt-CN/VC-R-CNN

视频问答(VideoQA)

Hierarchical Conditional Relation Networks for Video Question Answering

论文:https://arxiv.org/abs/2002.10698

代码:https://github.com/thaolmk54/hcrn-videoqa

视觉语言导航

Towards Learning a Generic Agent for Vision-and-Language Navigation via Pre-training

论文:https://arxiv.org/abs/2002.10638

代码(即将开源):https://github.com/weituo12321/PREVALENT

视频压缩

Learning for Video Compression with Hierarchical Quality and Recurrent Enhancement

论文:https://arxiv.org/abs/2003.01966

代码:https://github.com/RenYang-home/HLVC

视频插帧

AdaCoF: Adaptive Collaboration of Flows for Video Frame Interpolation

论文:https://arxiv.org/abs/1907.10244

代码:https://github.com/HyeongminLEE/AdaCoF-pytorch

FeatureFlow: Robust Video Interpolation via Structure-to-Texture Generation

论文:http://openaccess.thecvf.com/content_CVPR_2020/html/Gui_FeatureFlow_Robust_Video_Interpolation_via_Structure-to-Texture_Generation_CVPR_2020_paper.html

代码:https://github.com/CM-BF/FeatureFlow

Zooming Slow-Mo: Fast and Accurate One-Stage Space-Time Video Super-Resolution

论文:https://arxiv.org/abs/2002.11616

代码:https://github.com/Mukosame/Zooming-Slow-Mo-CVPR-2020

Space-Time-Aware Multi-Resolution Video Enhancement

主页:https://alterzero.github.io/projects/STAR.html

论文:http://arxiv.org/abs/2003.13170

代码:https://github.com/alterzero/STARnet

Scene-Adaptive Video Frame Interpolation via Meta-Learning

论文:https://arxiv.org/abs/2004.00779

代码:https://github.com/myungsub/meta-interpolation

Softmax Splatting for Video Frame Interpolation

主页:http://sniklaus.com/papers/softsplat

论文:https://arxiv.org/abs/2003.05534

代码:https://github.com/sniklaus/softmax-splatting

风格迁移

Diversified Arbitrary Style Transfer via Deep Feature Perturbation

论文:https://arxiv.org/abs/1909.08223

代码:https://github.com/EndyWon/Deep-Feature-Perturbation

Collaborative Distillation for Ultra-Resolution Universal Style Transfer

论文:https://arxiv.org/abs/2003.08436

代码:https://github.com/mingsun-tse/collaborative-distillation

车道线检测

Inter-Region Affinity Distillation for Road Marking Segmentation

论文:https://arxiv.org/abs/2004.05304

代码:https://github.com/cardwing/Codes-for-IntRA-KD

"人-物"交互(HOT)检测

PPDM: Parallel Point Detection and Matching for Real-time Human-Object Interaction Detection

论文:https://arxiv.org/abs/1912.12898

代码:https://github.com/YueLiao/PPDM

Detailed 2D-3D Joint Representation for Human-Object Interaction

论文:https://arxiv.org/abs/2004.08154

代码:https://github.com/DirtyHarryLYL/DJ-RN

Cascaded Human-Object Interaction Recognition

论文:https://arxiv.org/abs/2003.04262

代码:https://github.com/tfzhou/C-HOI

VSGNet: Spatial Attention Network for Detecting Human Object Interactions Using Graph Convolutions

论文:https://arxiv.org/abs/2003.05541

代码:https://github.com/ASMIftekhar/VSGNet

轨迹预测

The Garden of Forking Paths: Towards Multi-Future Trajectory Prediction

论文:https://arxiv.org/abs/1912.06445

代码:https://github.com/JunweiLiang/Multiverse

数据集:https://next.cs.cmu.edu/multiverse/

Social-STGCNN: A Social Spatio-Temporal Graph Convolutional Neural Network for Human Trajectory Prediction

论文:https://arxiv.org/abs/2002.11927

代码:https://github.com/abduallahmohamed/Social-STGCNN

运动预测

Collaborative Motion Prediction via Neural Motion Message Passing

论文:https://arxiv.org/abs/2003.06594

代码:https://github.com/PhyllisH/NMMP

MotionNet: Joint Perception and Motion Prediction for Autonomous Driving Based on Bird’s Eye View Maps

论文:https://arxiv.org/abs/2003.06754

代码:https://github.com/pxiangwu/MotionNet

光流估计

Learning by Analogy: Reliable Supervision from Transformations for Unsupervised Optical Flow Estimation

论文:https://arxiv.org/abs/2003.13045

代码:https://github.com/lliuz/ARFlow

图像检索

Evade Deep Image Retrieval by Stashing Private Images in the Hash Space

论文:http://openaccess.thecvf.com/content_CVPR_2020/html/Xiao_Evade_Deep_Image_Retrieval_by_Stashing_Private_Images_in_the_CVPR_2020_paper.html

代码:https://github.com/sugarruy/hashstash

虚拟试衣

Towards Photo-Realistic Virtual Try-On by Adaptively Generating↔Preserving Image Content

论文:https://arxiv.org/abs/2003.05863

代码:https://github.com/switchablenorms/DeepFashion_Try_On

HDR

Single-Image HDR Reconstruction by Learning to Reverse the Camera Pipeline

主页:https://www.cmlab.csie.ntu.edu.tw/~yulunliu/SingleHDR

论文下载链接:https://www.cmlab.csie.ntu.edu.tw/~yulunliu/SingleHDR_/00942.pdf

代码:https://github.com/alex04072000/SingleHDR

对抗样本

Enhancing Cross-Task Black-Box Transferability of Adversarial Examples With Dispersion Reduction

论文:https://openaccess.thecvf.com/content_CVPR_2020/papers/Lu_Enhancing_Cross-Task_Black-Box_Transferability_of_Adversarial_Examples_With_Dispersion_Reduction_CVPR_2020_paper.pdf

代码:https://github.com/erbloo/dr_cvpr20

Towards Large yet Imperceptible Adversarial Image Perturbations with Perceptual Color Distance

论文:https://arxiv.org/abs/1911.02466

代码:https://github.com/ZhengyuZhao/PerC-Adversarial

三维重建

Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild

CVPR 2020 Best Paper

主页:https://elliottwu.com/projects/unsup3d/

论文:https://arxiv.org/abs/1911.11130

代码:https://github.com/elliottwu/unsup3d

Multi-Level Pixel-Aligned Implicit Function for High-Resolution 3D Human Digitization

主页:https://shunsukesaito.github.io/PIFuHD/

论文:https://arxiv.org/abs/2004.00452

代码:https://github.com/facebookresearch/pifuhd

论文:http://openaccess.thecvf.com/content_CVPR_2020/papers/Patel_TailorNet_Predicting_Clothing_in_3D_as_a_Function_of_Human_CVPR_2020_paper.pdf

代码:https://github.com/chaitanya100100/TailorNet

数据集:https://github.com/zycliao/TailorNet_dataset

Implicit Functions in Feature Space for 3D Shape Reconstruction and Completion

论文:http://openaccess.thecvf.com/content_CVPR_2020/papers/Chibane_Implicit_Functions_in_Feature_Space_for_3D_Shape_Reconstruction_and_CVPR_2020_paper.pdf

代码:https://github.com/jchibane/if-net

论文:http://openaccess.thecvf.com/content_CVPR_2020/papers/Mir_Learning_to_Transfer_Texture_From_Clothing_Images_to_3D_Humans_CVPR_2020_paper.pdf

代码:https://github.com/aymenmir1/pix2surf

深度补全

Uncertainty-Aware CNNs for Depth Completion: Uncertainty from Beginning to End

论文:https://arxiv.org/abs/2006.03349

代码:https://github.com/abdo-eldesokey/pncnn

语义场景补全

3D Sketch-aware Semantic Scene Completion via Semi-supervised Structure Prior

论文:https://arxiv.org/abs/2003.14052

代码:https://github.com/charlesCXK/TorchSSC

图像/视频描述

Syntax-Aware Action Targeting for Video Captioning

论文:http://openaccess.thecvf.com/content_CVPR_2020/papers/Zheng_Syntax-Aware_Action_Targeting_for_Video_Captioning_CVPR_2020_paper.pdf

代码:https://github.com/SydCaption/SAAT

线框解析

Holistically-Attracted Wireframe Parser

论文:http://openaccess.thecvf.com/content_CVPR_2020/html/Xue_Holistically-Attracted_Wireframe_Parsing_CVPR_2020_paper.html

代码:https://github.com/cherubicXN/hawp

数据集

OASIS: A Large-Scale Dataset for Single Image 3D in the Wild

论文:https://arxiv.org/abs/2007.13215

数据集:https://oasis.cs.princeton.edu/

STEFANN: Scene Text Editor using Font Adaptive Neural Network

主页:https://prasunroy.github.io/stefann/

论文:http://openaccess.thecvf.com/content_CVPR_2020/html/Roy_STEFANN_Scene_Text_Editor_Using_Font_Adaptive_Neural_Network_CVPR_2020_paper.html

代码:https://github.com/prasunroy/stefann

数据集:https://drive.google.com/open?id=1sEDiX_jORh2X-HSzUnjIyZr-G9LJIw1k

Interactive Object Segmentation with Inside-Outside Guidance

论文下载链接:http://openaccess.thecvf.com/content_CVPR_2020/papers/Zhang_Interactive_Object_Segmentation_With_Inside-Outside_Guidance_CVPR_2020_paper.pdf

代码:https://github.com/shiyinzhang/Inside-Outside-Guidance

数据集:https://github.com/shiyinzhang/Pixel-ImageNet

Video Panoptic Segmentation

论文:https://arxiv.org/abs/2006.11339

代码:https://github.com/mcahny/vps

数据集:https://www.dropbox.com/s/ecem4kq0fdkver4/cityscapes-vps-dataset-1.0.zip?dl=0

FSS-1000: A 1000-Class Dataset for Few-Shot Segmentation

论文:http://openaccess.thecvf.com/content_CVPR_2020/html/Li_FSS-1000_A_1000-Class_Dataset_for_Few-Shot_Segmentation_CVPR_2020_paper.html

代码:https://github.com/HKUSTCV/FSS-1000

数据集:https://github.com/HKUSTCV/FSS-1000

3D-ZeF: A 3D Zebrafish Tracking Benchmark Dataset

主页:https://vap.aau.dk/3d-zef/

论文:https://arxiv.org/abs/2006.08466

代码:https://bitbucket.org/aauvap/3d-zef/src/master/

数据集:https://motchallenge.net/data/3D-ZeF20

TailorNet: Predicting Clothing in 3D as a Function of Human Pose, Shape and Garment Style

论文:http://openaccess.thecvf.com/content_CVPR_2020/papers/Patel_TailorNet_Predicting_Clothing_in_3D_as_a_Function_of_Human_CVPR_2020_paper.pdf

代码:https://github.com/chaitanya100100/TailorNet

数据集:https://github.com/zycliao/TailorNet_dataset

Oops! Predicting Unintentional Action in Video

主页:https://oops.cs.columbia.edu/

论文:https://arxiv.org/abs/1911.11206

代码:https://github.com/cvlab-columbia/oops

数据集:https://oops.cs.columbia.edu/data

The Garden of Forking Paths: Towards Multi-Future Trajectory Prediction

论文:https://arxiv.org/abs/1912.06445

代码:https://github.com/JunweiLiang/Multiverse

数据集:https://next.cs.cmu.edu/multiverse/

Open Compound Domain Adaptation

主页:https://liuziwei7.github.io/projects/CompoundDomain.html

数据集:https://drive.google.com/drive/folders/1_uNTF8RdvhS_sqVTnYx17hEOQpefmE2r?usp=sharing

论文:https://arxiv.org/abs/1909.03403

代码:https://github.com/zhmiao/OpenCompoundDomainAdaptation-OCDA

Intra- and Inter-Action Understanding via Temporal Action Parsing

论文:https://arxiv.org/abs/2005.10229

主页和数据集:https://sdolivia.github.io/TAPOS/

Dynamic Refinement Network for Oriented and Densely Packed Object Detection

论文下载链接:https://arxiv.org/abs/2005.09973

代码和数据集:https://github.com/Anymake/DRN_CVPR2020

COCAS: A Large-Scale Clothes Changing Person Dataset for Re-identification

论文:https://arxiv.org/abs/2005.07862

数据集:暂无

KeypointNet: A Large-scale 3D Keypoint Dataset Aggregated from Numerous Human Annotations

论文:https://arxiv.org/abs/2002.12687

数据集:https://github.com/qq456cvb/KeypointNet

MSeg: A Composite Dataset for Multi-domain Semantic Segmentation

论文:http://vladlen.info/papers/MSeg.pdf

代码:https://github.com/mseg-dataset/mseg-api

数据集:https://github.com/mseg-dataset/mseg-semantic

AvatarMe: Realistically Renderable 3D Facial Reconstruction "in-the-wild"

论文:https://arxiv.org/abs/2003.13845

数据集:https://github.com/lattas/AvatarMe

Learning to Autofocus

论文:https://arxiv.org/abs/2004.12260

数据集:暂无

FaceScape: a Large-scale High Quality 3D Face Dataset and Detailed Riggable 3D Face Prediction

论文:https://arxiv.org/abs/2003.13989

代码:https://github.com/zhuhao-nju/facescape

Bodies at Rest: 3D Human Pose and Shape Estimation from a Pressure Image using Synthetic Data

论文下载链接:https://arxiv.org/abs/2004.01166

代码:https://github.com/Healthcare-Robotics/bodies-at-rest

数据集:https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/KOA4ML

FineGym: A Hierarchical Video Dataset for Fine-grained Action Understanding

主页:https://sdolivia.github.io/FineGym/

论文:https://arxiv.org/abs/2004.06704

A Local-to-Global Approach to Multi-modal Movie Scene Segmentation

主页:https://anyirao.com/projects/SceneSeg.html

论文下载链接:https://arxiv.org/abs/2004.02678

代码:https://github.com/AnyiRao/SceneSeg

Deep Homography Estimation for Dynamic Scenes

论文:https://arxiv.org/abs/2004.02132

数据集:https://github.com/lcmhoang/hmg-dynamics

Assessing Image Quality Issues for Real-World Problems

主页:https://vizwiz.org/tasks-and-datasets/image-quality-issues/

论文:https://arxiv.org/abs/2003.12511

UnrealText: Synthesizing Realistic Scene Text Images from the Unreal World

论文:https://arxiv.org/abs/2003.10608

代码和数据集:https://github.com/Jyouhou/UnrealText/

PANDA: A Gigapixel-level Human-centric Video Dataset

论文:https://arxiv.org/abs/2003.04852

数据集:http://www.panda-dataset.com/

IntrA: 3D Intracranial Aneurysm Dataset for Deep Learning

论文:https://arxiv.org/abs/2003.02920

数据集:https://github.com/intra3d2019/IntrA

Cross-View Tracking for Multi-Human 3D Pose Estimation at over 100 FPS

论文:https://arxiv.org/abs/2003.03972

数据集:暂无

其他

CONSAC: Robust Multi-Model Fitting by Conditional Sample Consensus

论文:http://openaccess.thecvf.com/content_CVPR_2020/html/Kluger_CONSAC_Robust_Multi-Model_Fitting_by_Conditional_Sample_Consensus_CVPR_2020_paper.html

代码:https://github.com/fkluger/consac

Learning to Learn Single Domain Generalization

论文:https://arxiv.org/abs/2003.13216

代码:https://github.com/joffery/M-ADA

Open Compound Domain Adaptation

主页:https://liuziwei7.github.io/projects/CompoundDomain.html

数据集:https://drive.google.com/drive/folders/1_uNTF8RdvhS_sqVTnYx17hEOQpefmE2r?usp=sharing

论文:https://arxiv.org/abs/1909.03403

代码:https://github.com/zhmiao/OpenCompoundDomainAdaptation-OCDA

Differentiable Volumetric Rendering: Learning Implicit 3D Representations without 3D Supervision

论文:http://www.cvlibs.net/publications/Niemeyer2020CVPR.pdf

代码:https://github.com/autonomousvision/differentiable_volumetric_rendering

QEBA: Query-Efficient Boundary-Based Blackbox Attack

论文:https://arxiv.org/abs/2005.14137

代码:https://github.com/AI-secure/QEBA

Equalization Loss for Long-Tailed Object Recognition

论文:https://arxiv.org/abs/2003.05176

代码:https://github.com/tztztztztz/eql.detectron2

Instance-aware Image Colorization

主页:https://ericsujw.github.io/InstColorization/

论文:https://arxiv.org/abs/2005.10825

代码:https://github.com/ericsujw/InstColorization

Contextual Residual Aggregation for Ultra High-Resolution Image Inpainting

论文:https://arxiv.org/abs/2005.09704

代码:https://github.com/Atlas200dk/sample-imageinpainting-HiFill

Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching

论文:https://arxiv.org/abs/2005.03860

代码:https://github.com/shiyujiao/cross_view_localization_DSM

Epipolar Transformers

论文:https://arxiv.org/abs/2005.04551

代码:https://github.com/yihui-he/epipolar-transformers

Bringing Old Photos Back to Life

主页:http://raywzy.com/Old_Photo/

论文:https://arxiv.org/abs/2004.09484

MaskFlownet: Asymmetric Feature Matching with Learnable Occlusion Mask

论文:https://arxiv.org/abs/2003.10955

代码:https://github.com/microsoft/MaskFlownet

Self-Supervised Viewpoint Learning from Image Collections

论文:https://arxiv.org/abs/2004.01793

论文2:https://research.nvidia.com/sites/default/files/pubs/2020-03_Self-Supervised-Viewpoint-Learning/SSV-CVPR2020.pdf

代码:https://github.com/NVlabs/SSV

Towards Discriminability and Diversity: Batch Nuclear-norm Maximization under Label Insufficient Situations

Oral

论文:https://arxiv.org/abs/2003.12237

代码:https://github.com/cuishuhao/BNM

Towards Learning Structure via Consensus for Face Segmentation and Parsing

论文:https://arxiv.org/abs/1911.00957

代码:https://github.com/isi-vista/structure_via_consensus

Plug-and-Play Algorithms for Large-scale Snapshot Compressive Imaging

Oral

论文:https://arxiv.org/abs/2003.13654

代码:https://github.com/liuyang12/PnP-SCI

Lightweight Photometric Stereo for Facial Details Recovery

论文:https://arxiv.org/abs/2003.12307

代码:https://github.com/Juyong/FacePSNet

Footprints and Free Space from a Single Color Image

论文:https://arxiv.org/abs/2004.06376

代码:https://github.com/nianticlabs/footprints

Self-Supervised Monocular Scene Flow Estimation

论文:https://arxiv.org/abs/2004.04143

代码:https://github.com/visinf/self-mono-sf

Quasi-Newton Solver for Robust Non-Rigid Registration

论文:https://arxiv.org/abs/2004.04322

代码:https://github.com/Juyong/Fast_RNRR

A Local-to-Global Approach to Multi-modal Movie Scene Segmentation

主页:https://anyirao.com/projects/SceneSeg.html

论文下载链接:https://arxiv.org/abs/2004.02678

代码:https://github.com/AnyiRao/SceneSeg

DeepFLASH: An Efficient Network for Learning-based Medical Image Registration

论文:https://arxiv.org/abs/2004.02097

代码:https://github.com/jw4hv/deepflash

Self-Supervised Scene De-occlusion

主页:https://xiaohangzhan.github.io/projects/deocclusion/

论文:https://arxiv.org/abs/2004.02788

代码:https://github.com/XiaohangZhan/deocclusion

Polarized Reflection Removal with Perfect Alignment in the Wild

主页:https://leichenyang.weebly.com/project-polarized.html

代码:https://github.com/ChenyangLEI/CVPR2020-Polarized-Reflection-Removal-with-Perfect-Alignment

Background Matting: The World is Your Green Screen

论文:https://arxiv.org/abs/2004.00626

代码:http://github.com/senguptaumd/Background-Matting

What Deep CNNs Benefit from Global Covariance Pooling: An Optimization Perspective

论文:https://arxiv.org/abs/2003.11241

代码:https://github.com/ZhangLi-CS/GCP_Optimization

Look-into-Object: Self-supervised Structure Modeling for Object Recognition

论文:暂无

代码:https://github.com/JDAI-CV/LIO

Video Object Grounding using Semantic Roles in Language Description

论文:https://arxiv.org/abs/2003.10606

代码:https://github.com/TheShadow29/vognet-pytorch

Dynamic Hierarchical Mimicking Towards Consistent Optimization Objectives

论文:https://arxiv.org/abs/2003.10739

代码:https://github.com/d-li14/DHM

SDFDiff: Differentiable Rendering of Signed Distance Fields for 3D Shape Optimization

论文:http://www.cs.umd.edu/~yuejiang/papers/SDFDiff.pdf

代码:https://github.com/YueJiang-nj/CVPR2020-SDFDiff

On Translation Invariance in CNNs: Convolutional Layers can Exploit Absolute Spatial Location

论文:https://arxiv.org/abs/2003.07064

代码:https://github.com/oskyhn/CNNs-Without-Borders

GhostNet: More Features from Cheap Operations

论文:https://arxiv.org/abs/1911.11907

代码:https://github.com/iamhankai/ghostnet

AdderNet: Do We Really Need Multiplications in Deep Learning?

论文:https://arxiv.org/abs/1912.13200

代码:https://github.com/huawei-noah/AdderNet

Deep Image Harmonization via Domain Verification

论文:https://arxiv.org/abs/1911.13239

代码:https://github.com/bcmi/Image_Harmonization_Datasets

Blurry Video Frame Interpolation

论文:https://arxiv.org/abs/2002.12259

代码:https://github.com/laomao0/BIN

Extremely Dense Point Correspondences using a Learned Feature Descriptor

论文:https://arxiv.org/abs/2003.00619

代码:https://github.com/lppllppl920/DenseDescriptorLearning-Pytorch

Filter Grafting for Deep Neural Networks

论文:https://arxiv.org/abs/2001.05868

代码:https://github.com/fxmeng/filter-grafting

论文解读:https://www.zhihu.com/question/372070853/answer/1041569335

Action Segmentation with Joint Self-Supervised Temporal Domain Adaptation

论文:https://arxiv.org/abs/2003.02824

代码:https://github.com/cmhungsteve/SSTDA

Detecting Attended Visual Targets in Video

论文:https://arxiv.org/abs/2003.02501

代码:https://github.com/ejcgt/attention-target-detection

Deep Image Spatial Transformation for Person Image Generation

论文:https://arxiv.org/abs/2003.00696

代码:https://github.com/RenYurui/Global-Flow-Local-Attention

Rethinking Zero-shot Video Classification: End-to-end Training for Realistic Applications

论文:https://arxiv.org/abs/2003.01455

代码:https://github.com/bbrattoli/ZeroShotVideoClassification

https://github.com/charlesCXK/3D-SketchAware-SSC

https://github.com/Anonymous20192020/Anonymous_CVPR5767

https://github.com/avirambh/ScopeFlow

https://github.com/csbhr/CDVD-TSP

https://github.com/ymcidence/TBH

https://github.com/yaoyao-liu/mnemonics

https://github.com/meder411/Tangent-Images

https://github.com/KaihuaTang/Scene-Graph-Benchmark.pytorch

https://github.com/sjmoran/deep_local_parametric_filters

https://github.com/charlesCXK/3D-SketchAware-SSC

https://github.com/bermanmaxim/AOWS

https://github.com/dc3ea9f/look-into-object

不确定中没中

FADNet: A Fast and Accurate Network for Disparity Estimation

论文:还没出来

代码:https://github.com/HKBU-HPML/FADNet

https://github.com/rFID-submit/RandomFID:不确定中没中

https://github.com/JackSyu/AE-MSR:不确定中没中

https://github.com/fastconvnets/cvpr2020:不确定中没中

https://github.com/aimagelab/meshed-memory-transformer:不确定中没中

https://github.com/TWSFar/CRGNet:不确定中没中

https://github.com/CVPR-2020/CDARTS:不确定中没中

https://github.com/anucvml/ddn-cvprw2020:不确定中没中

https://github.com/dl-model-recommend/model-trust:不确定中没中

https://github.com/apratimbhattacharyya18/CVPR-2020-Corr-Prior:不确定中没中

https://github.com/onetcvpr/O-Net:不确定中没中

https://github.com/502463708/Microcalcification_Detection:不确定中没中

https://github.com/anonymous-for-review/cvpr-2020-deep-smoke-machine:不确定中没中

https://github.com/anonymous-for-review/cvpr-2020-smoke-recognition-dataset:不确定中没中

https://github.com/cvpr-nonrigid/dataset:不确定中没中

https://github.com/theFool32/PPBA:不确定中没中

https://github.com/Realtime-Action-Recognition/Realtime-Action-Recognition

目录
相关文章
|
6月前
|
人工智能 安全
SCI/EI学术论文写作发表
不论是研究生还是博士,还是想要有所追求的本科生,都希望能够能够把自己的研究成果记录下来分享。这里结合我最近一直在看的几本书,用简洁的中文语言和能听懂的人话,直接带来整个SCI、EI的写作框架。让你直接在科研一途直接上路。
|
机器学习/深度学习 编解码 算法
DL之DeepLabv2:DeepLab v2算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略
DL之DeepLabv2:DeepLab v2算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略
DL之DeepLabv2:DeepLab v2算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略
|
3月前
|
算法 数据挖掘 数据建模
【2023年4月美赛加赛】Y题:Understanding Used Sailboat Prices 三篇完整论文及代码
本文概述了2023年4月美赛加赛Y题“Understanding Used Sailboat Prices”的三篇完整论文及代码,涉及二手帆船定价的数学模型构建、区域效应分析、模型在香港市场的适用性验证,以及对帆船市场因素的深入分析和预测。
46 0
|
计算机视觉 异构计算
YOLO在升级 | PP-YOLO v2开源致敬YOLOV4携带Tricks又准又快地归来(附论文与源码)
YOLO在升级 | PP-YOLO v2开源致敬YOLOV4携带Tricks又准又快地归来(附论文与源码)
171 0
|
机器学习/深度学习 人工智能 自动驾驶
ICLR 2022为博客单独设置Track,Andrej Karpathy复现LeCun论文入选
ICLR 2022为博客单独设置Track,Andrej Karpathy复现LeCun论文入选
SCI论文写作训练营笔记汇总03_科技论文写作(方法篇)
讨论部分的内容有时需要附属一下前面讨论的结果, 以精简的语言提一下即可, 后面需要有加深性的内容, 如果没有加深性的内容, 那么这篇文章里最好不要出现讨论的内容, 结果和讨论可以放在一起。结论要重点复述结果部分的内容, 讨论里的一些内容不写在结论里也是可以的。
253 0
|
机器学习/深度学习 算法 数据挖掘
Chapter1 统计学习方法概论
第1章 统计学习方法概论 1.统计学习是关于计算机基于数据构建概率统计模型并运用模型对数据进行分析与预测的一门学科。统计学习包括监督学习、非监督学习、半监督学习和强化学习。 2.统计学习方法三要素——模型、策略、算法,对理解统计学习方法起到提纲挈领的作用。 3.本书主要讨论监督学习,监督学习可以概括如下:从给定有限的训练数据出发, 假设数据是独立同分布的,而且假设模型属于某个假设空间,应用某一评价准则,从假设空间中选取一个最优的模型,使它对已给训练数据及未知测试数据在给定评价标准意义下有最准确的预测。 4.统计学习中,进行模型选择或者说提高学习的泛化能力是一个重要问题。如果只考虑减少训
Chapter1 统计学习方法概论
|
机器学习/深度学习 自然语言处理 算法
graphSage还是HAN ?吐血力作综述Graph Embeding 经典好文
graphSage还是HAN ?吐血力作综述Graph Embeding 经典好文
graphSage还是HAN ?吐血力作综述Graph Embeding 经典好文
|
机器学习/深度学习 算法 数据挖掘
DL之Xception:Xception算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略
DL之Xception:Xception算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略
DL之Xception:Xception算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略
下一篇
无影云桌面