FAQ系列 | index extensions特性介绍

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云数据库 RDS PostgreSQL,集群系列 2核4GB
简介: FAQ系列 | index extensions特性介绍

0、导读

本文介绍MySQL的index extensions特性,以及如何利用这个特性实现SQL查询优化。

1、什么是index extensions

index extensions是MySQL 5.6.9之后的新特性,关于这个特性,手册中的解释是这样的:InnoDB automatically extends each secondary index by appending the primary key columns to it(出处详见手册 8.2.1.7 Use of Index Extensions,原文链接:https://dev.mysql.com/doc/refman/5.6/en/index-extensions.html )。简言之就是,InnoDB引擎表中,会把主键所有列值附加存储在辅助索引中

假设有这样一个表:

CREATE TABLE t(

a int not null,

b int not null,

c int not null,

d int not null,

PRIMARY KEY(a, b),

KEY i_c(c)

) ENGINE=InnoDB;

意思是,该表中的辅助索引 i_c 的索引键值,实际上也同时存储了主键中的两个列值,也就是说,i_c 的索引数据结构中,实际上存储的列是:c、a、b 三列的值。

我们可通过 innodb_table_monitor 查看验证下:

TABLE: name test/t, id 681, flags 1, columns 7, indexes 2, appr.rows 0

COLUMNS: a: DATA_INT DATA_BINARY_TYPE DATA_NOT_NULL len 4; b: DATA_INT DATA_BINARY_TYPE DATA_NOT_NULL len 4; c: DATA_INT DATA_BINARY_TYPE DATA_NOT_NULL len 4; d: DATA_INT DATA_BINARY_TYPE DATA_NOT_NULL len 4; DB_ROW_ID: DATA_SYS prtype 256 len 6; DB_TRX_ID: DATA_SYS prtype 257 len 6; DB_ROLL_PTR: DATA_SYS prtype 258 len 7;

INDEX: name PRIMARY, id 1159, fields 2/6, uniq 2, type 3

 root page 3, appr.key vals 0, leaf pages 1, size pages 1

 FIELDS:  a b DB_TRX_ID DB_ROLL_PTR c d


INDEX: name i_c, id 1160, fields 1/3, uniq 3, type 0

 root page 4, appr.key vals 0, leaf pages 1, size pages 1

 FIELDS:  c a b

可见,确实是如此。我们顺便也看到 PRIMARY KEY 里包含了所有的列值,以及 DB_TRX_ID、DB_ROLL_PTR 等额外属性(InnoDB引擎独有特性,用于实现InnoDB的事务)。

2、怎么利用index extensions

事实上,辅助索引实际也存储主键值的特性,在InnoDB引擎中一直都是如此,只是从5.6.9版本开始后,在计算执行计划时,查询优化器(optimizer)才能识别到这个特性,并且利用这个特性。而在5.6.9以前,虽然这个特性也存在,但并不被查询优化器识别,也就无法被利用了。

这个特性可适用于 ref, range, and index_merge 等多种索引访问方式,在稀松索引扫描(loose index scan)、联接(join)、排序以及MIN()/MAX()等场景下。

我们来看看这个特性怎么被优化器识别并利用的,假设上述测试表中的测试数据有:

SELECT * FROM t;

+—-+—-+—-+—-+

| a | b | c | d |

+—-+—-+—-+—-+

| 1 | 2 | 4 | 2 |

| 1 | 3 | 2 | 2 |

| 1 | 4 | 9 | 2 |

| 1 | 5 | 9 | 2 |

| 1 | 6 | 8 | 2 |

| 2 | 2 | 9 | 2 |

| 3 | 2 | 8 | 2 |

| 4 | 2 | 6 | 2 |

| 5 | 2 | 6 | 2 |

| 6 | 2 | 1 | 2 |

+—-+—-+—-+—-+

MySQL版本:5.6.21-70.0-log Percona Server (GPL), Release 70.0, Revision 688。

假设有下面的查询,看下它的执行计划:

mysql> DESC SELECT a,b,c FROM t WHERE a = 1 AND c = 9\G

         id: 1

select_type: SIMPLE

      table: t

       type: ref

possible_keys: PRIMARY,i_c

        key: i_c

    key_len: 8
        ref: const,const
       rows: 2
      Extra: Using index

在5.6.9以前的版本(或者修改优化器开关,关闭 index extensions 特性。如果用5.6.9以后的版本测试,还请记得):

mysql> DESC SELECT a,b,c FROM t WHERE a = 1 AND c = 9\G

         id: 1

select_type: SIMPLE

      table: t

       type: ref

possible_keys: PRIMARY,i_c

        key: i_c

    key_len: 4
        ref: const
       rows: 3
      Extra: Using where;
Using index

可执行下面的命令关闭 index extensions 特性:

mysql> SET optimizer_switch = ‘use_index_extensions=off’;

这两个执行计划的区别在于:

  • 前者的key_len是8而后者是4,预示着可以用到的索引不仅是i_c这个索引,还有主键索引;
  • 前者的ref列值是const,const,而后者只有const,预示着前者用到了2个索引部分,而后者只有一个;
  • 前者评估的rows为2,而后者评估的rows为3,因为前者效率更高;
  • 后者的Extra列中多了Using Where,表示后者还需要从结果中再次过滤数据,而不能像前者那样直接利用索引取得结果。

我们还可以根据观察STATUS中的Handler_read_%值差异来对比两个SQL的实际执行代价(执行FLUSH STATUS后,执行查询SQL,再执行SHOW STATUS LIKE ‘Handler_read_%’ 查看):

  • 后者的代价是 Handler_read_next = 3;
  • 前者的代价是 Handler_read_next = 2;
  • 如果数据量更大的话,这个差值也会随之增大。

由此可见,前者的效率确实要比后者来的更高。

3、后记

我们应该经常关注新版本的新特性,利用这些新特性提升SQL效率 :)

相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
8月前
|
安全 网络架构 Python
blog-engine-06-pelican 静态网站生成 支持 markdown 和 reST 语法
这篇内容介绍了多个静态博客引擎的对比及详细教程,包括 Jekyll、Hugo、Hexo、Pelican、Gatsby、VuePress、Nuxt.js 和 Middleman。重点讲述了 Pelican,一个Python编写的静态博客生成器,其特点是静态生成、Markdown写作、丰富的主题和插件系统,以及简单的部署。安装Pelican需要先安装Python,然后通过pip安装Pelican并使用pelican-quickstart初始化博客。文章还提到了Pelican的优点,如速度快、写作体验好、社区支持和高度可定制,但也指出其静态性质和学习曲线较陡峭的不足之处。
|
2月前
|
监控 关系型数据库 MySQL
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第26天】数据库作为现代应用系统的核心组件,其性能优化至关重要。本文主要探讨MySQL的索引策略与查询性能调优。通过合理创建索引(如B-Tree、复合索引)和优化查询语句(如使用EXPLAIN、优化分页查询),可以显著提升数据库的响应速度和稳定性。实践中还需定期审查慢查询日志,持续优化性能。
238 0
|
前端开发 API
webpack配置篇(三十八):语义化版本(Semantic Versioning)规范格式
webpack配置篇(三十八):语义化版本(Semantic Versioning)规范格式
133 0
webpack配置篇(三十八):语义化版本(Semantic Versioning)规范格式
|
JavaScript 索引
ES7新功能includes用法详解
ES7新功能includes用法详解
245 0
|
存储 SQL 关系型数据库
FAQ系列 | index extensions特性介绍
FAQ系列 | index extensions特性介绍
|
SQL 关系型数据库 MySQL
开发指南—常见问题—INDEX HINT
PolarDB-X支持全局二级索引(Global Secondary Index,简称GSI) ,您可以通过INDEX HINT命令指定从GSI中获取查询结果。
100 0
|
API 索引
【Elastic Engineering】Elasticsearch:可组合的 Index templates - 7.8 版本之后
Elasticsearch:可组合的 Index templates - 7.8 版本之后
455 0
【Elastic Engineering】Elasticsearch:可组合的 Index templates - 7.8 版本之后
|
传感器 编解码 算法
Halcon XLD: eXtended Line Descriptions 亚像素轮廓
Halcon XLD: eXtended Line Descriptions 亚像素轮廓
866 0
Halcon XLD: eXtended Line Descriptions 亚像素轮廓