Win10 Labelme标注数据转为YOLOV5 训练的数据集

简介: Win10 Labelme标注数据转为YOLOV5 训练的数据集

将Labelme标注的数据复制到工程的根目录,并将其命名为LabelmeData。我的工程根目录是

tt.png

import os
import numpy as np
import json
from glob import glob
import cv2
from sklearn.model_selection import train_test_split
from os import getcwd
classes = ["aircraft", "oiltank"]
# 1.标签路径
labelme_path = "LabelmeData/"
isUseTest = True  # 是否创建test集
# 3.获取待处理文件
files = glob(labelme_path + "*.json")
files = [i.replace("\\", "/").split("/")[-1].split(".json")[0] for i in files]
print(files)
if isUseTest:
    trainval_files, test_files = train_test_split(files, test_size=0.1, random_state=55)
else:
    trainval_files = files
# split
train_files, val_files = train_test_split(trainval_files, test_size=0.1, random_state=55)
def convert(size, box):
    dw = 1. / (size[0])
    dh = 1. / (size[1])
    x = (box[0] + box[1]) / 2.0 - 1
    y = (box[2] + box[3]) / 2.0 - 1
    w = box[1] - box[0]
    h = box[3] - box[2]
    x = x * dw
    w = w * dw
    y = y * dh
    h = h * dh
    return (x, y, w, h)
wd = getcwd()
print(wd)
def ChangeToYolo5(files, txt_Name):
    if not os.path.exists('tmp/'):
        os.makedirs('tmp/')
    list_file = open('tmp/%s.txt' % (txt_Name), 'w')
    for json_file_ in files:
        json_filename = labelme_path + json_file_ + ".json"
        imagePath = labelme_path + json_file_ + ".jpg"
        list_file.write('%s/%s\n' % (wd, imagePath))
        out_file = open('%s/%s.txt' % (labelme_path, json_file_), 'w')
        json_file = json.load(open(json_filename, "r", encoding="utf-8"))
        height, width, channels = cv2.imread(labelme_path + json_file_ + ".jpg").shape
        for multi in json_file["shapes"]:
            points = np.array(multi["points"])
            xmin = min(points[:, 0]) if min(points[:, 0]) > 0 else 0
            xmax = max(points[:, 0]) if max(points[:, 0]) > 0 else 0
            ymin = min(points[:, 1]) if min(points[:, 1]) > 0 else 0
            ymax = max(points[:, 1]) if max(points[:, 1]) > 0 else 0
            label = multi["label"]
            if xmax <= xmin:
                pass
            elif ymax <= ymin:
                pass
            else:
                cls_id = classes.index(label)
                b = (float(xmin), float(xmax), float(ymin), float(ymax))
                bb = convert((width, height), b)
                out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
                print(json_filename, xmin, ymin, xmax, ymax, cls_id)
ChangeToYolo5(train_files, "train")
ChangeToYolo5(val_files, "val")
ChangeToYolo5(test_files, "test")
'''
file1 = open("tmp/train.txt", "r")
file2 = open("tmp/val.txt", "r")
file_list1 = file1.readlines()  # 将所有变量读入列表file_list1
file_list2 = file2.readlines()  # 将所有变量读入列表file_list2
file3 = open("tmp/trainval.txt", "w")
for line in file_list1:
    print(line)
    file3.write(line)
for line in file_list2:
    print(line)
    file3.write(line)
'''


 

  • 打开工程,在根目录新建LabelmeToYolov5.py。写入下面的代码

这段代码执行完成会在LabelmeData生成每个图片的txt标注数据,同时在tmp文件夹下面生成训练集、验证集和测试集的txt,txt记录的是图片的路径,为下一步生成YoloV5训练和测试用的数据集做准备。


在tmp文件夹新建makedata.py。执行完成后会在工程的根目录生成VOC数据集。


import shutil
import os
file_List = ["train", "val", "test"]
for file in file_List:
    if not os.path.exists('../VOC/images/%s' % file):
        os.makedirs('../VOC/images/%s' % file)
    if not os.path.exists('../VOC/labels/%s' % file):
        os.makedirs('../VOC/labels/%s' % file)
    print(os.path.exists('../tmp/%s.txt' % file))
    f = open('../tmp/%s.txt' % file, 'r')
    lines = f.readlines()
    for line in lines:
        print(line)
        line = "/".join(line.split('/')[-5:]).strip()
        shutil.copy(line, "../VOC/images/%s" % file)
        line = line.replace('jpg', 'txt')
        shutil.copy(line, "../VOC/labels/%s/" % file)

tt.png


目录
相关文章
【yolo训练数据集】标注好的垃圾分类数据集共享
【yolo训练数据集】标注好的垃圾分类数据集共享
2331 140
【yolo训练数据集】标注好的垃圾分类数据集共享
|
7月前
|
机器学习/深度学习 开发工具 计算机视觉
YOLOv8 目标检测 | 自定义数据集
YOLOv8 目标检测 | 自定义数据集
|
7月前
|
XML 数据格式 Python
Labelimg标注自己的数据集,及如何划分训练集和验证集,应用于Yolov5
Labelimg标注自己的数据集,及如何划分训练集和验证集,应用于Yolov5
1514 0
|
2月前
|
XML JSON 数据可视化
数据集学习笔记(六):目标检测和图像分割标注软件介绍和使用,并转换成YOLO系列可使用的数据集格式
本文介绍了labelImg和labelme两款图像标注工具的安装、使用、数据转换和验证方法,适用于目标检测和图像分割任务,支持YOLO等数据集格式。
543 2
数据集学习笔记(六):目标检测和图像分割标注软件介绍和使用,并转换成YOLO系列可使用的数据集格式
|
2月前
|
机器学习/深度学习 JSON 数据可视化
YOLO11-pose关键点检测:训练实战篇 | 自己数据集从labelme标注到生成yolo格式的关键点数据以及训练教程
本文介绍了如何将个人数据集转换为YOLO11-pose所需的数据格式,并详细讲解了手部关键点检测的训练过程。内容涵盖数据集标注、格式转换、配置文件修改及训练参数设置,最终展示了训练结果和预测效果。适用于需要进行关键点检测的研究人员和开发者。
498 0
|
4月前
|
数据采集 人工智能 小程序
如何制作数据集并基于yolov5训练成模型并部署
这篇文章介绍了如何为YOLOv5制作数据集、训练模型、进行模型部署的整个流程,包括搜集和标注图片、创建数据集文件夹结构、编写配置文件、训练和评估模型,以及将训练好的模型部署到不同平台如ROS机器人、微信小程序和移动应用等。
如何制作数据集并基于yolov5训练成模型并部署
|
7月前
安装并使用labelImg标注数据集,yolo,VOC格式
安装并使用labelImg标注数据集,yolo,VOC格式
223 0
|
存储 大数据 Linux
基于 YOLOv8 的自定义数据集训练
基于 YOLOv8 的自定义数据集训练
|
网络安全 开发工具 网络架构
YOLOV7详细解读(四)训练自己的数据集
YOLOV7详细解读(四)训练自己的数据集
799 0