本文是从Java视角理解系统结构连载文章
在高性能编程时,经常接触到多线程. 起初我们的理解是, 多个线程并行地执行总比单个线程要快, 就像多个人一起干活总比一个人干要快. 然而实际情况是, 多线程之间需要竞争IO设备, 或者竞争锁资源,导致往往执行速度还不如单个线程. 在这里有一个经常提及的概念就是: 上下文切换(Context Switch).
上下文切换的精确定义可以参考: http://www.linfo.org/context_switch.html。下面做个简单的介绍. 多任务系统往往需要同时执行多道作业.作业数往往大于机器的CPU数, 然而一颗CPU同时只能执行一项任务, 如何让用户感觉这些任务正在同时进行呢? 操作系统的设计者巧妙地利用了时间片轮转的方式, CPU给每个任务都服务一定的时间, 然后把当前任务的状态保存下来, 在加载下一任务的状态后, 继续服务下一任务. 任务的状态保存及再加载, 这段过程就叫做上下文切换. 时间片轮转的方式使多个任务在同一颗CPU上执行变成了可能,但同时也带来了保存现场和加载现场的直接消耗。
(Note. 更精确地说, 上下文切换会带来直接和间接两种因素影响程序性能的消耗. 直接消耗包括: CPU寄存器需要保存和加载, 系统调度器的代码需要执行, TLB实例需要重新加载, CPU 的pipeline需要刷掉; 间接消耗指的是多核的cache之间得共享数据, 间接消耗对于程序的影响要看线程工作区操作数据的大小).
在linux中可以使用vmstat观察上下文切换的次数. 执行命令如下:
$ vmstat 1
procs -----------memory---------- ---swap-- -----io---- -system-- ----cpu----
r b swpd free buff cache si so bi bo in cs us sy id wa
1 0 0 45939444535601118192 0 0 14 12 238 30 6 192 1
0 0 0 45932124535681118816 0 0 0 96 958 1108 4 194 2
0 0 0 45933604535681118456 0 0 0 0 895 1044 3 195 0
1 0 0 45934084535681118456 0 0 0 0 929 1073 4 195 0
0 0 0 45934964535681118456 0 0 0 01133 1363 6 193 0
0 0 0 45935684535681118476 0 0 0 0 992 1190 4 195 0
vmstat 1
指每秒统计一次, 其中cs列就是指上下文切换的数目. 一般情况下, 空闲系统的上下文切换每秒大概在1500以下.
对于我们经常使用的抢占式操作系统来说, 引起上下文切换的原因大概有以下几种: 1. 当前执行任务的时间片用完之后, 系统CPU正常调度下一个任务 2. 当前执行任务碰到IO阻塞, 调度器将挂起此任务, 继续下一任务 3. 多个任务抢占锁资源, 当前任务没有抢到,被调度器挂起,
继续下一任务 4. 用户代码挂起当前任务, 让出CPU时间 5. 硬件中断.
前段时间发现有人在使用futex的WAIT和WAKE来测试context switch的直接消耗(链接), 也有人使用阻塞IO来测试context switch的消耗(链接).那么Java程序怎么测试和观察上下文切换的消耗呢?
我做了一个小实验, 代码很简单, 有两个工作线程. 开始时,第一个线程挂起自己;
第二个线程唤醒第一个线程,再挂起自己; 第一个线程醒来之后唤醒第二个线程,
再挂起自己. 就这样一来一往,互相唤醒对方, 挂起自己. 代码如下:
import java.util.concurrent.atomic.AtomicReference;
import java.util.concurrent.locks.LockSupport;
publicfinalclassContextSwitchTest {
staticfinalintRUNS=3;
staticfinalintITERATES=1000000;
staticAtomicReferenceturn=newAtomicReference();
staticfinalclassWorkerThreadextendsThread {
volatile Thread other;
volatileint nparks;
publicvoidrun() {
finalAtomicReferencet= turn;
finalThreadother=this.other;
if (turn == null || other == null)
thrownewNullPointerException();
intp=0;
for (inti=0; i < ITERATES; ++i) {
while (!t.compareAndSet(other, this)) {
LockSupport.park();
++p;
}
LockSupport.unpark(other);
}
LockSupport.unpark(other);
nparks = p;
System.out.println("parks: " + p);
}
}
staticvoidtest()throws Exception {
WorkerThreada=newWorkerThread();
WorkerThreadb=newWorkerThread();
a.other = b;
b.other = a;
turn.set(a);
longstartTime= System.nanoTime();
a.start();
b.start();
a.join();
b.join();
longendTime= System.nanoTime();
intparkNum= a.nparks + b.nparks;
System.out.println("Average time: " + ((endTime - startTime) / parkNum)
+ "ns");
}
publicstaticvoidmain(String[] args)throws Exception {
for (inti=0; i < RUNS; i++) {
test();
}
}
}
编译后,在我自己的笔记本上( Intel(R) Core(TM) i5 CPU M 460 @ 2.53GHz, 2
core, 3M L3 Cache) 用测试几轮,结果如下:
java -cp . ContextSwitchTest
parks: 953495
parks: 953485
Average time: 11373ns
parks: 936305
parks: 936302
Average time: 11975ns
parks: 965563
parks: 965560
Average time: 13261ns
我们会发现这么简单的for循环, 线性执行会非常快,不需要1秒, 而执行这段程序需要几十秒的耗时. 每个上下文切换需要耗去十几us的时间,这对于程序吞吐量的影响很大.
同时我们可以执行vmstat 1 观查一下上下文切换的频率是否变快
$ vmstat 1
procs -----------memory---------- ---swap-- -----io---- -system-- ----cpu----
r b swpd free buff cache si so bi bo in cs us sy id wa
1 0 0 44249884579641154912 0 0 13 12 252 80 6 192 1
0 0 0 44204524579641159900 0 0 0 01586 2069 6 193 0
1 0 0 44076764579641171552 0 0 0 01436 1883 8 389 0
1 0 0 44029164579641172032 0 0 0 84 2298245792 9 485 2
1 0 0 44160244579641158912 0 0 0 0 95382198544 17 1073 0
1 1 0 44160964579641158968 0 0 0 116 79973159934 18 774 0
1 0 0 44203844579641154776 0 0 0 0 96265196076 15 1074 1
1 0 0 44030124579721171096 0 0 0 152 104321213537 20 1266 2
再使用strace观察以上程序中Unsafe.park()究竟是哪道系统调用造成了上下文切换:
$strace-fjava-cp.ContextSwitchTest
[pid 5969] futex(0x9571a9c,FUTEX_WAKE_OP_PRIVATE,1,1,0x9571a98, {FUTEX_OP_SET, 0, FUTEX_OP_CMP_GT, 1})=1
[pid 5968] ) =0
[pid 5969] futex(0x9571ad4,FUTEX_WAIT_PRIVATE,949,NULL
[pid 5968] futex(0x9564368,FUTEX_WAKE_PRIVATE,1)=0
[pid 5968] futex(0x9571ad4,FUTEX_WAKE_OP_PRIVATE,1,1,0x9571ad0, {FUTEX_OP_SET, 0, FUTEX_OP_CMP_GT, 1}
[pid 5969] ) =0
[pid 5968] ) =1
[pid 5969] futex(0x9571628,FUTEX_WAIT_PRIVATE,2,NULL
果然还是futex.
再使用perf看看上下文对于Cache的影响:
$ perf stat -e cache-misses java -cp . ContextSwitchTest
parks:999999
parks:1000000
Average time:16201ns
parks:998930
parks:998926
Average time:14426ns
parks:998034
parks:998204
Average time:14489ns
Performance counter stats for 'java -cp . ContextSwitchTest':
2,550,605 cache-misses
90.221827008 seconds time elapsed
1分半钟内有255万多次cache未命中.
嗯, 貌似太长了, 可以结束了.接下来会继续几篇博文继续分析一些有意思的东西.
(1) 从Java视角看内存屏障 (Memory Barrier)
(2) 从java视角看CPU亲缘性 (CPU Affinity)
等..敬请关注
PS. 其实还做了一个实验, 测试CPU Affinity对于Context Switch的影响.
$ taskset -c 0 java -cp . ContextSwitchTest
parks:992713
parks:1000000
Average time:2169ns
parks:978428
parks:1000000
Average time:2196ns
parks:989897
parks:1000000
Average time:2214ns
这个命令把进程绑定在0号CPU上,结果Context Switch的消耗小了一个数量级, 什么原因呢? 卖个关子, 在谈到CPU Affinity的博文再说 :)。