二、排查思路
2.1、业务场景排查
问自己几个问题?
- 1)集群中数据类型是怎么样的?
- 2)集群中有多少数据?
- 3)集群中有多少节点数、分片数?
- 4)当前集群索引和检索的速率如何?
- 5)当前在执行哪种类型的查询或者其他操作?
2、建议Htop观察,结合ElaticHQ 观察CPU曲线
3、CPU高的时候,建议看一下ES节点的日志,看看是不是有大量的GC。
4、查看hot_threads。
GET _nodes/hot_threads
::: {test}{ikKuXkFvRc-qFCqG99smGg}{VE-uqoiARoONJwomfPwRBw}{127.0.0.1}{127.0.0.1:9300}{ml.machine_memory=8481566720, ml.max_open_jobs=20, ml.enabled=true}
Hot threads at 2018-04-09T15:58:21.117Z, interval=500ms, busiestThreads=3, ignoreIdleThreads=true:
0.0% (0s out of 500ms) cpu usage by thread 'Attach Listener'
unique snapshot
unique snapshot
unique snapshot
unique snapshot
unique snapshot
unique snapshot
unique snapshot
unique snapshot
unique snapshot
unique snapshot
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
三、解决方案:
3.1、集群负载高,增加新节点以缓解负载。
3.2、增加堆内存到系统内存的1半,最大31GB(理论上线32GB).
如果机器内存不够,那就加大内存吧。
https://github.com/elastic/elasticsearch/issues/10437
https://discuss.elastic.co/t/es-high-cpu-usage-when-idle/87950/4
3.3、插入数据的时候,副本数设置为0.
分片数不可以修改,副本数是可以修改的。
注意:分片过多,会导致:堆内存压力大。
3.4、配置优化
Force all memory to be locked, forcing the JVM to never swap
bootstrap.mlockall: true
Threadpool Settings
Search pool
threadpool.search.type: fixed
threadpool.search.size: 20
threadpool.search.queue_size: 200
Bulk pool
threadpool.bulk.type: fixed
threadpool.bulk.size: 60
threadpool.bulk.queue_size: 3000
Index pool
threadpool.index.type: fixed
threadpool.index.size: 20
threadpool.index.queue_size: 1000
Indices settings
indices.memory.index_buffer_size: 30%
indices.memory.min_shard_index_buffer_size: 12mb
indices.memory.min_index_buffer_size: 96mb
Cache Sizes
indices.fielddata.cache.size: 30%
#indices.fielddata.cache.expire: 6h #will be depreciated & Dev recomend not to use it
indices.cache.filter.size: 30%
#indices.cache.filter.expire: 6h #will be depreciated & Dev recomend not to use it
Indexing Settings for Writes
index.refresh_interval: 30s
#index.translog.flush_threshold_ops: 50000
#index.translog.flush_threshold_size: 1024mb
index.translog.flush_threshold_period: 5m
index.merge.scheduler.max_thread_count: 1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30