DL之AlDL之AlexNet:利用卷积神经网络类AlexNet实现猫狗分类识别(图片数据增强→保存h5模型)(二)

简介: DL之AlexNet:利用卷积神经网络类AlexNet实现猫狗分类识别(图片数据增强→保存h5模型)

基于ImageDataGenerator实现数据增强


扩充数据集大小,增强模型的泛化能力。比如进行旋转、变形、归一化等。


扩充数据量:对图像作简单的预处理(如缩放,改变像素值范围);

随机打乱图像顺序,并且在图像集上无限循环(不会出现数据用完的情况);

对图像加入扰动,大大增大数据量,避免多次输入相同的训练图像产生过拟合。

优化训练效率:训练神经网络时经常需要将数据分成小的批次(例如每16张图像作为一个batch提供给神经网络),在ImageDataGenerator中,只需要简单提供一个参数 batch_size = 16。



类AlexNet代码

n_channels = 3

input_shape = (*image_size, n_channels)

input_layer = Input(input_shape)

z = input_layer

z = Conv2D(64, (3, 3))(z)

z = BatchNormalization()(z)

z = Activation('relu')(z)

z = MaxPooling2D(pool_size=(2, 2))(z)

z = Conv2D(64, (3, 3))(z)

z = BatchNormalization()(z)

z = Activation('relu')(z)

z = MaxPooling2D(pool_size=(2, 2))(z)

z = Conv2D(128, (3, 3))(z)

z = BatchNormalization()(z)

z = Activation('relu')(z)

z = MaxPooling2D(pool_size=(2, 2))(z)

z = Conv2D(128, (3, 3))(z)

z = BatchNormalization()(z)

z = Activation('relu')(z)

z = MaxPooling2D(pool_size=(2, 2))(z)

z = Flatten()(z) # 将特征变成一维向量

z = Dense(64)(z)

z = BatchNormalization()(z)

z = Activation('relu')(z)

z = Dropout(0.5)(z)

z = Dense(1)(z)

z = Activation('sigmoid')(z)



相关文章
|
3月前
|
机器学习/深度学习 算法 调度
14种智能算法优化BP神经网络(14种方法)实现数据预测分类研究(Matlab代码实现)
14种智能算法优化BP神经网络(14种方法)实现数据预测分类研究(Matlab代码实现)
337 0
|
2月前
|
机器学习/深度学习 数据采集 存储
概率神经网络的分类预测--基于PNN的变压器故障诊断(Matlab代码实现)
概率神经网络的分类预测--基于PNN的变压器故障诊断(Matlab代码实现)
273 0
|
机器学习/深度学习 TensorFlow 算法框架/工具
利用Python和TensorFlow构建简单神经网络进行图像分类
利用Python和TensorFlow构建简单神经网络进行图像分类
343 3
|
机器学习/深度学习 人工智能 算法
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
文本分类识别系统。本系统使用Python作为主要开发语言,首先收集了10种中文文本数据集("体育类", "财经类", "房产类", "家居类", "教育类", "科技类", "时尚类", "时政类", "游戏类", "娱乐类"),然后基于TensorFlow搭建CNN卷积神经网络算法模型。通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型,并保存为本地的h5格式。然后使用Django开发Web网页端操作界面,实现用户上传一段文本识别其所属的类别。
419 1
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
|
机器学习/深度学习 PyTorch 算法框架/工具
深度学习入门案例:运用神经网络实现价格分类
深度学习入门案例:运用神经网络实现价格分类
|
机器学习/深度学习 数据采集 数据可视化
深度学习实践:构建并训练卷积神经网络(CNN)对CIFAR-10数据集进行分类
本文详细介绍如何使用PyTorch构建并训练卷积神经网络(CNN)对CIFAR-10数据集进行图像分类。从数据预处理、模型定义到训练过程及结果可视化,文章全面展示了深度学习项目的全流程。通过实际操作,读者可以深入了解CNN在图像分类任务中的应用,并掌握PyTorch的基本使用方法。希望本文为您的深度学习项目提供有价值的参考与启示。
|
机器学习/深度学习 算法 PyTorch
【从零开始学习深度学习】50.Pytorch_NLP项目实战:卷积神经网络textCNN在文本情感分类的运用
【从零开始学习深度学习】50.Pytorch_NLP项目实战:卷积神经网络textCNN在文本情感分类的运用
|
3月前
|
机器学习/深度学习 传感器 算法
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
205 2
|
3月前
|
机器学习/深度学习 并行计算 算法
【CPOBP-NSWOA】基于豪冠猪优化BP神经网络模型的多目标鲸鱼寻优算法研究(Matlab代码实现)
【CPOBP-NSWOA】基于豪冠猪优化BP神经网络模型的多目标鲸鱼寻优算法研究(Matlab代码实现)
|
3月前
|
机器学习/深度学习 缓存 算法
2025年华为杯A题|通用神经网络处理器下的核内调度问题研究生数学建模|思路、代码、论文|持续更新中....
2025年华为杯A题|通用神经网络处理器下的核内调度问题研究生数学建模|思路、代码、论文|持续更新中....
398 1